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Abstract

Home cooks often have specific requirements
regarding individual ingredients in a recipe
(e.g., allergies). Substituting ingredients in a
recipe can necessitate complex changes to in-
structions (e.g., replacing chicken with tofu in
a stir fry requires pressing the tofu, marinating
it for less time, and par-cooking)—which has
thus far hampered efforts to automatically cre-
ate satisfactory versions of recipes. We address
these challenges with the RecipeCrit model
that allows users to edit existing recipes by
proposing individual ingredients to add or re-
move. Crucially, we develop an unsupervised
critiquing module that allows our model to iter-
atively re-write recipe instructions to accommo-
date the complex changes needed for ingredient
substitutions. Experiments on the Recipe1M
dataset show that our model can more effec-
tively edit recipes compared to strong language-
modeling baselines, creating recipes that satisfy
user constraints and humans deem more correct,
serendipitous, coherent, and relevant.

1 Introduction

Individual preferences and dietary needs shape the
types of recipes that home cooks choose to fol-
low. Cooks must often accommodate the desire for
versions of recipes that do not contain a specific
ingredient (substitution—e.g., for food allergies)
or do make use of particular ingredients (addition—
e.g., to use up near-expiry items). We thus aim to
build a system for recipe editing that accommo-
dates fine-grained ingredient preferences.

Prior research in recipe editing has focused on
substituting individual ingredients in the ingredi-
ents list (Yamanishi et al., 2015) or recommending
new recipes based on similar ingredients (Teng
et al., 2012). Individual ingredient substitution
rules (e.g., tapioca flour and xanthan gum for wheat
flour) often necessitate additional changes to the
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cooking procedure to function properly (Li et al.,
2022). Other studies employed recommendation-
based approaches. However, they suffer from data
sparsity: there is an extremely large set of possible
recipes that differ by a single ingredient, and many
specific substitutions may not appear in recipe ag-
gregators (Petrescu et al., 2021).

Recipe editing can be seen as a combination
of recipe generation and controllable natural lan-
guage generation (Shin et al., 2020), and has been
explored to adapt recipes for broad dietary con-
straints (Li et al., 2022) and cuisines (Pan et al.,
2020). Pre-trained language models have been
used to create recipe directions given a known title
and set of ingredients (Kiddon et al., 2016; Bosse-
lut et al., 2018), but generated recipes suffer from
inconsistencies. Li et al. (2022) instead build a
paired recipe dataset, but face challenges scaling
due to the large set of possible recipes and dietary
restrictions; people often express even more spe-
cific ingredient-level preferences (e.g., dislikes of
certain ingredients or allergies).

In this work, we address the above challenges
and propose RecipeCrit, a denoising-based model
trained to complete recipes and learn semantic re-
lationships between ingredients and instructions.
The novelty of this work relies on an unsuper-
vised critiquing method that allows users to pro-
vide ingredient-focused feedback iteratively; the
model substitutes ingredients and also re-writes
the recipe text using a generative language model.
While existing methods for controllable genera-
tion require paired data with specially constructed
prompts (Keskar et al., 2019) or hyperparameter-
sensitive training of individual models for each
possible piece of feedback (Dathathri et al., 2020),
our unsupervised critiquing framework enables
recipe editing models to be trained with arbitrary
un-paired data. This generalizes recipe editing, un-
like existing methods for controllable generation
that rely on paired data with specially constructed



Cherry tomato confit
Title

- 1 pint red cherry tomatoes
- ¼ cup extra virgin olive oil
- …

Ingredients

- Preheat even to 325 degrees
- Spread tomatoes and garlic on a sheet
- …
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Figure 1: RecipeCrit includes a recipe encoder and an
ingredient and instruction decoders using the base recipe
and target ingredients to edit cooking instructions.

prompts (Keskar et al., 2019) or hyperparameter-
sensitive training of individual models for each
possible feedback (Dathathri et al., 2020).

Experiments on the Recipe1M (Salvador et al.,
2017) dataset show that RecipeCrit edits recipes
in a way that better satisfies user constraints, pre-
serves the original recipe, and produces coherent
recipes (i.e., recipe instructions are better condi-
tioned on the ingredients list) compared to state-of-
the-art pre-trained recipe generators and language
models. Human evaluators judge RecipeCrit’s
recipes to be more serendipitous, correct, coher-
ent, and relevant to the ingredient-specific positive
and negative feedback (i.e., critiques).

2 RecipeCrit Model

Previous methods to edit recipes focused on broad
classes like dietary categories (Li et al., 2022) and
cuisines (Pan et al., 2020) and require paired cor-
pora (which do not exist for fine-grained edits).
We propose RecipeCrit: a hierarchical denoising
recipe auto-encoder that does not require paired cor-
pora to train and accommodates positive and nega-
tive user feedback about ingredients (Figure 1).

RecipeCrit is divided into three submodels: an
Encoder E(·), which produces the latent represen-
tation z from the (potentially noisy) recipe; an
ingredient predictor C(·), which predicts the in-
gredients ŷing , and a decoder D(·), which recon-
structs the cooking instructions ŷins from z condi-
tioned on the ŷing .

Recipe Encoder E(·) We build a powerful latent
representation that captures the different elements
of a recipe via the mean-pooled output of the rep-
resentation of each sentence using a Transformer
encoder (Vaswani et al., 2017). We provide the
title xttl , ingredients Xing , and instructions Xinst

as raw text input. While the title xttl comprises a
single sentence, the ingredients Xing and instruc-
tions Xinst are provided as lists of sentences; we
use raw recipe texts directly as input, removing the
need of a pre-processing step. We encode the in-
gredients and instructions in a hierarchical manner
using another Transformer to create fixed-length
representations. We compute the latent represen-
tation z by concatenating the representations of
each component and applying a projection followed
by a tanh function: z = tanh(W[TRF(xttl ) ∥
HTRF(Xing) ∥HTRF(Xins)]), where ∥ is the con-
catenation operator, and W, b the projection pa-
rameters.

Ingredient Predictor C(·) We treat ingredient
prediction as multi-label binary classification over
an ingredient vocabulary I , with a boolean target
vector ying representing ingredients in a ground
truth recipe. We use a Set Transformer (Salvador
et al., 2019) to decode ingredients, pooling ingredi-
ent logits over time-steps to compute binary cross-
entropy loss against the target; we also employ an
EOS token to predict the ingredient set cardinality:

Ling(·) = −
∑|I|

i
ying
i log ŷing

i − λying
eos log ŷ

ing
eos,

where λ controls the impact of the EOS loss.
At inference, we return the top-k ingredients,

where k is the first position with a positive EOS
prediction.

Instruction Decoder D(·) The last component
generates cooking instructions using a Transformer
decoder. We condition the decoder on z, previ-
ously generated outputs ŷins

1:t−1, and ingredients
ŷing . Specifically, we encode the ingredients using
an embedding layer A(·) and concatenate their rep-
resentations with the recipe representation z. We
train using teacher-forcing and cross-entropy:

Lins(z, A(ŷ
ing)) = −

∑
t
yins
t log ŷins

t .

Taking inspiration from masked language and
span modeling (Devlin et al., 2019; Joshi et al.,
2020), we train RecipeCrit as a de-noising recipe
auto-encoder via the task of recipe completion: We



mask random ingredients and instruction sentences
in model input, and task our model to generate the
full recipe. We train our model in two stages: first
minimizing ingredient prediction loss Ling ; then
freezing the encoder and optimizing for instruction
decoding loss Lins using ground truth ingredients.

Unsupervised Critiquing We aim to refine a
recipe based on the user’s feedback and the pre-
dicted ingredients ŷing . We denote ỹing the vector
of desired ingredients. Simply incorporating user
feedback by explicitly including/removing ingre-
dients before generating instructions often cannot
satisfy user preferences due to weak conditioning
between predicted ingredients and generated in-
structions. In RecipeCrit we turn to a critiquing
method that modifies the recipe representation z
before using the updated representation to jointly
generate the edited ingredients and instructions.
Specifically, users add a new ingredient c by set-
ting ŷing

c = 1 or remove some using ŷing
c = 0.

Inspired by success in editing the latent space in
text style transfer and recommendation (Antognini
et al., 2021a; Wang et al., 2019), we first compute
the gradient with respect to z:

gt−1 = ∇zt−1Ling(C(zt−1), ỹ
ing).

Then ,we use the gradient to modulate z such that
the new predicted ingredients ŷing are close to the
desired ingredients ỹing :

zt = zt−1 − αt−1gt−1/||gt−1||2.

Prior work stopped updating z when ∥ ỹing −
ŷing ∥1< ϵ for some threshold ϵ. We instead pro-
pose to compute the absolute difference |ỹing

c -
ŷing
c |. Since the optimization is nonconvex, we

improve convergence by using an early stopping
mechanism. Our approach is unsupervised and can
update the full recipe latent representation, reflect-
ing how adding or removing an ingredient can ne-
cessitate adjustments to other ingredients and cook-
ing steps. Pseudo-code is available in the App.

Another advantage of our approach is the pos-
sibility to update multiple ingredients simultane-
ously: adding or removing an ingredient might af-
fect other ones as well and thus, a local-based stop-
ping criteria allows such a change.

3 Experiments

Dataset We assess our model on the Recipe1M
(Salvador et al., 2017) dataset of 1M recipe texts.

Each recipe contains a title, a list of ingredients,
and a list of cooking instructions. We filter out
recipes with more than 20 ingredients or steps, cre-
ating train, val, and test splits with 635K, 136K,
and 136K recipes, respectively. The average recipe
comprises 9 ingredients and 166 words. We fol-
low Salvador et al. (2019) and build a set of 1, 488
ingredients. For critiquing, we select 20 ingredi-
ents to be critiqued among the most and the least
popular ingredients across the train set. For each
critique, we randomly sample 50 recipes that con-
tain the critiqued ingredient and 50 that do not.

Baselines We compare our proposed RecipeCrit
architecture against large language models trained
using our denoising objective. We fine-tune BART
(Lewis et al., 2020), an encoder-decoder language
model trained to denoise documents, as well as
RecipeGPT (Lee et al., 2020), a decoder-only lan-
guage model pre-trained on Recipe1M to predict
ingredients and cooking steps. To demonstrate the
necessity of our denoising approach, we also com-
pare against PPLM (Dathathri et al., 2020), a recent
method for controllable generation from language
models that leverages sets of desired and undesired
sequences (for ingredient addition and substitution,
respectively). All models use greedy decoding.

Metrics We evaluate edited recipes via metrics
that reflect user preferences. First, a user wants a
recipe similar to the base recipe—we measure in-
gredient fidelity via IoU (Jaccard distance) and F1
scores between the edited and base recipe ingredi-
ents list. Next, the recipe must satisfy the user’s spe-
cific ingredient feedback—we report the percent-
age of edited recipes that properly include/exclude
the target ingredient (Success Rate). Finally, the
recipe must be coherent: able to be followed and
internally consistent. As an ingredient constraint
can be satisfied in many ways, we follow Kiddon
et al. (2016) and measure coherence via precision,
recall, and F1-score of ingredients mentioned in
the generated steps compared to the predicted in-
gredients. This verifies that the recipe itself relies
on the listed ingredients.

Training Details For fair comparison, we com-
pare similar-sized models. RecipeCrit uses an en-
coder and decoder with 4 Transformer layers, 4 at-
tention heads, and hidden size of 512. We randomly
mask 50% of the ingredients and instructions dur-
ing training, and tune them on the validation set us-
ing random search. We give more details in App. B.



Ingr. Fidelity Predicted Instr.

Model % Succ. IoU F1 Prec. Rec. F1

A
dd

RecipeGPT 33.2 65.4 78.7 56.7 69.0 62.2
PPLM 34.4 60.9 72.7 53.0 63.0 57.6
BART 41.1 70.5 82.8 61.5 61.1 61.3
RecipeCrit 66.3 74.5 85.4 73.7 74.4 74.1

R
em

ov
e RecipeGPT 91.1 37.2 52.9 38.4 54.6 45.0

PPLM 92.3 61.3 32.6 47.2 53.5 50.2
BART 95.4 55.7 73.3 57.6 61.6 59.5
RecipeCrit 95.8 68.8 80.7 74.0 74.5 74.2

Table 1: Critiquing performance: success rate of
adding/removing an ingredient, IoU and F1 ingredient
scores, and the Precision, Recall, and F1 of ingredients
in cooking instructions.

RQ1: Recipe Editing via Critiquing We evalu-
ate whether our models can edit recipes by creating
new ingredient sets and corresponding recipe in-
structions when faced with positive and negative
feedback: an ingredient that must be added or re-
moved (substituted) from the recipe to create a new
version. For ingredient substitution, we mask the
critiqued ingredient and all steps that reference it as
denoising inputs; for addition, we use the full base
recipe. For RecipeGPT and BART, we filter the
predicted ingredients lists to exclude/include the
target ingredient. For PPLM, we provide the target
ingredient as a bag of words to steer generation,
using RecipeGPT as the base generative model.
RecipeCrit uses our iterative critiquing framework
(Section 2) to accommodate user feedback.

We show results for constraint satisfaction (suc-
cess rate), ingredient fidelity, and recipe coherence
(predicted instructions) in Table 1. RecipeCrit out-
performs baselines across all metrics for ingredient
addition and removal. While our baselines take ad-
vantage of pre-trained language models, they can-
not successfully incorporate user feedback during
editing. PPLM-guided constrained decoding is not
only two orders of magnitude slower than our de-
noising models (3min vs. 1s per recipe), but we ob-
serve poor fidelity and frequent incoherent instruc-
tions (e.g., repetition). Meanwhile, forcing ingredi-
ent lists to omit or contain specific ingredients has
little impact on the generated recipe instructions—
even when the desired ingredient is manually in-
serted into the ingredients list, RecipeGPT and
BART mention using the ingredient only in 33%
and 41% of generated instructions.

Our model and gradient-based critiquing method
leads to a stronger influence of the edited ingredi-
ents on recipe instructions. By directly modifying

Model Ser. Cor. Coh. Rel.
RecipeGPT −0.04∗ −0.03∗ −0.01∗ −0.07∗

PPLM −0.03∗ −0.05∗ 0.01 0.00∗

BART −0.05∗ −0.07∗ −0.09∗ −0.07∗

RecipeCrit 0.12 0.14 0.10 0.14

Table 2: Human evaluation of edited recipes in terms of
best-worst scaling for serendipity, correctness, coher-
ence, and relevance. ∗ denotes a significant difference
compared to RecipeCrit (posthoc Tukey test, p < 0.01).

the recipe latent representation that is then attended
over during step generation, RecipeCrit achieves
30-50% relative improvement in success rate for
adding ingredients and 20-65% relative improve-
ments in coherence (F1 score between predicted
ingredients and those mentioned in the instructions)
for both addition and removal. Meanwhile, base-
lines tend to ignore many ingredients in the ingre-
dient list when generating new recipe directions.

Human Evaluation We have established that
RecipeCrit creates edits that better satisfy user con-
straints (as expressed via critiques), more closely
resemble the user’s original preferences (base
recipe), and make better use of the predicted in-
gredients (ingredient coherence). We next perform
a qualitative human evaluation of our edited recipes
via Mechanical Turk, asking the user: how pleas-
antly surprised they were (Serendipity); whether
the recipe respected their feedback (Correctness);
how easy the recipe was to follow (Coherence); and
whether the recipe resembled the original recipe
(Relevance). We uniformly sampled 800 edited
recipes (400 for adding and 400 for removing)
across the ingredients to critique and showed them
in random order. The annotators judged the edited
recipes using best-worst scaling (Louviere et al.,
2015) with scores normalized to [−1,+1]. Table 2
shows that our edited recipes are largely preferred
on all criteria. Our results highlight that critiquing
improves the coherence of generated recipes and
their resemblance to the original ones.

Case Study Table 3 shows a sample of our best-
performing baseline (BART) and RecipeCrit edit-
ing the “cherry tomato confit” recipe to include
“kale”. While both edited recipes include kale,
RecipeCrit stays faithful to the user’s preference
for “tomato confit” while incorporating the new
feedback: it makes a slightly different tomato con-
fit but uses kale as the “fresh” or salad part of the
dish. However, BART generates a cocktail recipe
instead that ignores the base recipe: it’s a drink
rather than food, sweet rather than savory, and ig-



Cherry tomato confit (base recipe)

clove, oil, pepper, rosemary, salt, tomato

1) preheat oven to 325 degrees
2) spread tomatoes and garlic on a sheet.
3) drizzle with oil, and sprinkle with rose-
mary, crushed red pepper, a large pinch of
salt and several grinds of pepper.
4) bake until tomatoes are wrinkled and fra-
grant, about 45 minutes, shaking pan.
5) transfer tomato pan to a rack to cool.
6) discard garlic.

BART

kale, cachaca, cream, ice, juice, liqueur,
pineapple, rum, strawberries, sugar, water
clove, oil, pepper, rosemary, salt, tomato

1) place ice cubes in a cocktail shaker.
2) add pineapple juice, coconut liqueurs,
cachacca, cream and rum ; shake well add
crushed ice to a collins glass.
3) add kale and strawberries to shaker.
4) strain drink into glass over crushed ice.
5) garnish with strawberry and pineapple.

RecipeCrit (Ours)

clove, kale, oil, pepper, rosemary, salt,
tomato

1) heat oven to 350 degrees.
2) place tomatoes in a large bowl.
3) drizzle with olive oil and sprinkle
with rosemary, salt and pepper; coat.
4) spread in a single layer on a sheet.
5) roast for 40 minutes.
6) remove and let cool for 10 minutes.
7) toss kale with tomatoes and garlic.

Table 3: Comparison of a cherry tomato confit recipe with its edited versions to include “kale” as an additional
ingredient. RecipeCrit proposes tomato confit with kale, but BART disregards the base recipe to make a cocktail.

nores tomatoes altogether. This aligns with the
results of the human evaluation. Complementary
results are shown in Table 5 and 6.

RQ2: Variants of Critiquing Algorithms Now
we show the significance of the early stopping
mechanism in our particular critiquing module
compared to previous thresholding methods (An-
tognini et al., 2021a; Wang et al., 2019). To demon-
strate why, we re-run experiments from RQ1 and
compare our early stopping against two baseline
thresholding criteria using 1) the absolute differ-
ence (i.e., |C(z∗t )c−ỹing

c | < τ ) and 2) the L1 norm
(i.e., ||C(z∗t ) − ỹing ||1 < τ ). We find that an L1-
based stopping criterion is suboptimal due to the
high dimensionality of the ingredients. Using the
absolute difference considerably improves the suc-
cess rate (+25% for add and +12% for remove).
Finally, our early stopping further increases the suc-
cess rate (+10%) for both adding and removing an
ingredient (see App. for exact numbers).

4 Conclusion

We present RecipeCrit, a denoising-based model
to edit cooking recipes. We first trained the model
for recipe completion to learn semantic relation-
ships between the ingredients and the instructions.
The novelty of this work relies on the user’s abil-
ity to provide ingredient-focused feedback. We
designed an unsupervised method that substitutes
the ingredients and re-writes the recipe text accord-
ingly. Experiments show that RecipeCrit can more
effectively edit recipes compared to strong base-
lines, creating recipes that satisfy user constraints
and are more serendipitous, correct, coherent, and
relevant as measured by human judges. For future
work, we plan to extend our method to large pre-
trained language models for other generative tasks
and to explainable models in the context of ratio-

nalization (Bastings et al., 2019; Antognini et al.,
2021b; Lei et al., 2016; Yu et al., 2021; Antognini
and Faltings, 2021).

5 Limitations

We demonstrated the effectiveness of our method
for the English language since, to the best of our
knowledge, there is no multi-lingual dataset similar
to Recipe1M. We would expect similar behavior for
languages having similar morphology to English.

Regarding computational resources, the training
on a single GPU takes a couple of hours, while the
inference and the critiquing can run on a single-
core CPU (in the range of 10 to 100 ms).

Cooking recipes are long and complex docu-
ments. While current language models and similar
ones have achieved impressive results, they still
suffer from a lack of coherence for long documents.
We have shown in our experiments that RecipeCrit
produced recipes whose coherence is preferred over
the baselines by human annotators. However, there
is still room for improvement as language model-
ing approaches for recipe generation do not have
an explicit guarantee of coherence (i.e. only listed
ingredients used, instructions only make use of in-
gredients or products mentioned before).

Similarly, as recipe instructions can consist of
free-text, there is no guarantee that recipe texts
will, for example, completely remove an ingredi-
ent. In real-world usage, our system can be adapted
by post-processing the recipe, including perform-
ing beam-search sampling and eliminating non-
satisfactory recipes. As a result, we continue to
urge caution for users with e.g. severe ingredient
allergies who may still need to carefully review
edited recipes to ensure compliance.
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Table 4: Reconstruction performance. We report the
IoU and F1 ingredient scores, and the Precision, Recall,
and F1 scores of ingredients in predicted instructions
w.r.t. predicted ones.

Ingr. Fidelity Predicted Instr.

Model IoU F1 Prec. Rec. F1
RecipeGPT 73.5 84.7 61.2 72.6 66.4
BART 76.7 86.4 61.5 64.7 63.1
RecipeCrit 78.6 88.2 68.2 73.0 70.5

A Ingredient & Recipe Reconstruction

As baseline recipe generation models are unable
to perform editing, we train all models using our
denoising recipe completion task. To evaluate their
generalization performance, we ask the models to
reconstruct recipes from the unseen test set, with
results shown in Table 4. We measure how well
each model can infer the missing ingredients given
the partial recipe context (IoU and F1 ingredient
scores), as well as how coherent the reconstructed
recipes are—the precision, recall, and F1 score of
ingredients mentioned in the generated instructions
compared to the predicted ingredients list.

RecipeCrit outperforms baselines in both mea-
sures. In particular, we find a significant im-
provement in ingredient mention precision, indicat-
ing that RecipeCrit better constrains its generated
recipe directions based on the predicted ingredients
list. Meanwhile, RecipeGPT and BART both tend
to mention new ingredients in the recipe text even if
they are not included in the ingredients list. As we
see in Section 3, this is problematic because such
models can include ingredients in the recipe steps
even if users have specified dislikes or allergies.

Such text-to-text models capture the distribu-
tion of language well, producing fluent-sounding
text. However, their lower scores for ingredient
completion and recipe text coherence suggest that
RecipeGPT and BART cannot distinguish how
recipes are procedural texts with internal consis-
tency, compared to generic text documents.

B Additional Training Details

We use a batch size of 32, dropout of 0.2, and
Adam with learning rate 0.0001. For the baselines
RecipeGPT and PPLM, we reuse the official code
from the authors. For BART, we employ the Hug-
gingFace library.
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Figure 2: Critiquing algorithm comparison between
global or local stopping criteria with threshold or early
stopping.

B.1 Hardware / Software
• CPU: 2x Intel Xeon E5-2680 v3, 2x 12 cores,

24 threads, 2.5 GHz, 30 MB cache;

• RAM: 16x16GB DDR4-2133;

• GPU: 1x Nvidia Titan X Maxwell;

• OS: Ubuntu 18.04;

• Software: Python 3.6, PyTorch 1.6.1, CUDA
10.2.



Algorithm 1 Iterative Critiquing Gradient Update (Crit).

1: function CRITIQUE(latent vector z, critiqued ingredient c, trained ingredients predictor C, decay
coefficient ζ, patience P , a maximum number of iterations T , desired ingredients ỹing )

2: Set z0 = z∗ = z, α0 = 1, best_val = ∞, patience = 0, t = 1;
3: while patience < P and t < T do
4: gt−1 = ∇zt−1Ling(C(zt−1), ỹ

ing);
5: zt = zt−1 − αt−1

gt−1

||gt−1||2 and ŷing = C(zt)

6: if |ỹing
c − ŷing

c | < best_val then
7: best_val = ŷing

c , z∗ = zt, and patience = 0
8: else
9: patience = patience + 1

10: αt = ζαt−1 and t = t+ 1;
11: return z∗;

Table 5: Comparison of a cherry tomato confit recipe with its edited versions to include “kale” as an additional
ingredient. None of those baselines add the critique ingredient. RecipeGPT disregards the base recipe. PPLM
generates a recipe in the same style than the base one, but three times longer and with a lack of coherence.

Cherry tomato confit (base recipe)

clove, oil, pepper, rosemary, salt, tomato

1) preheat oven to 325 degrees
2) spread tomatoes and garlic on a sheet.
3) drizzle with oil, and sprinkle with rosemary, crushed red
pepper, a large pinch of salt and several grinds of pepper.
4) bake until tomatoes are wrinkled and fragrant, about 45
minutes, shaking pan.
5) transfer tomato pan to a rack to cool.
6) discard garlic.

RecipeGPT

cream, cheese, margarine, milk, onion, pepper, salmon,
salt, tea
clove, oil, rosemary, tomato

1) saute green peppers and onions in margarine.
2) add cream cheese and stir until melted.
3) add velveeta, milk and corn.
4) heat until melted, stirring occasionally.
5) add salt.
6) garnish with thin strips of red pepper and cilantro.
7) serve with crackers.

PPLM

oil, pepper, tomato, clove, rosemary, tomato

1) preheat the oven to 400 degrees f.
2) place a large roasting pan in the center of the oven.
3) heat the olive oil in a large skillet over medium heat until hot.
4) add the tomatoes and cook for about 3 minutes or until the skins begin to split.
5) place in the oven for about 30 to 40 minutes until the skins begin to blister and shrivel.
6) place the tomatoes in cold water to cool, then remove the skins.
7) in a bowl, combine the tomatoes and their juices, salt, and pepper, tossing well to coat evenly.
8) remove the tomatoes, place them on a sheet tray, and bake for about 45 minutes, until the skins begin to blister and shrivel.
9) the tomatoes should still be juicy, and the skins should be very wrinkly. remove the tomatoes from the oven and let cool.
10) remove the skins from the tomatoes and discard the skins. transfer the tomatoes to a clean food processor.
11) blend the tomatoes with the roasted garlic, and add the peppercorns in the last 3 minutes of the cooking time, just until you
can no longer process the tomatoes into a paste. place a sheet of parchment paper 12) on a clean work surface.
13) place a sheet of the phyllo on the work surface.
14) (keep the rest of the oil covered with damp paper towel.
15) brush the sheet of phyllo with oil. repeat with two more sheets of phyllo to form the second sheet.
16) you should have four layers.
17) if you have extra sheets left, place on a baking sheet and toast in oven with the oven door propped open until the sheets
become golden brown.
18) remove the phyllo sheets from the oven and place on a clean work surface. cut each layered sheet along the scored lines into
quarters.
19) place 1 heaping tablespoon of the tomato-peppercorn mixture in the center of each of four phyllo sheets.
20) fold the phyllo over into a triangle and place on a parchment-lined baking sheet. bake at 400 degrees f for 7 to 8 minutes,
until lightly browned.
21) cool slightly before removing from the baking sheet, and serve warm.



Table 6: Comparison of a baked parmesan fish recipe with its edited versions to include “cream” as an additional
ingredient. RecipeCrit incorporates the cream into a single-batter style fry, while BART only uses cream as a “serve
with sour cream” addition to the original recipe. RecipteGPT disregards the base recipe to make a pizza. PPLM
generates a completely different and incoherent recipe, and it suffers from text degeneration.

Baked parmesan fish (base recipe)

catfish, cheese, egg, flour, milk, paprika,
pepper, salt

1) preheat oven to 350 degrees.
2) rinse fillets and pat dry with paper towel.
3) in a pie plate , combine parmesan cheese
, flour , paprika , salt and pepper.
4) in another pie plate , combine milk and
beaten egg.
5) dip fillet in egg mixture and then coat
with parmesan cheese mixture.
6) place in a well greased 9 x 13 pan.
7) bake uncovered for 25-30 minutes or un-
til fish easily flakes with a fork.

BART

cream, egg, fillets, flour, garlic, milk, pa-
prika, parsley, pepper, salt, thyme
catfish, cheese

1) preheat oven to 350 degrees.
2) rinse fillets and pat dry with paper
towel.
3) in a pie plate, combine parmesan
cheese, flour, paprika, salt and in an-
other pie plate or bowl, combine milk and
beaten egg.
4) dip fillet in egg mixture and then coat
with parmesa cheese mixture.
5) place in a well greased 9 x 13 pan.
6) bake uncovered for 25-30 minutes or
until fish easily flakes with a fork.
7) remove from oven and let stand for 5
minutes.
8) serve with sour cream and lemon
wedges.
9) enjoy!

RecipeCrit (Ours)

catfish, cheese, cream, egg, flour, pa-
prika, pepper, salt
milk

1) preheat oven to 350 degrees f ( 175
degrees c ).
2) grease a baking dish.
3) rinse fillets and pat dry with paper
towel.
4) in a medium bowl , mix together the
cream cheese , sour cream , flour , salt ,
paprika , and pepper.
5) beat in the eggs.
6) dip filles
7) pour the mixture into the baking dish.
8) bake in the preheated oven until the
fish flakes easily with a fork , about 30
minutes.

RecipeGPT

crusts, jalapeno, mushrooms, oil, popcorn, sauce, tomato
catfish, cheese, egg, flour, milk, paprika, pepper, salt

1) combine barbecue sauce and tomato sauce in bowl ;
set aside.
2) toss mushrooms with oil ; bake in 425 degrees f
standard oven 5 min.
3) or until softened.
4) place crusts on sheet pan.
5) spread each crust with 1/2 cup sauce mixture.
6) top evenly with mushrooms, jalapenos, shrimp and
cheese.
7) bake 7 min.
8) or until cheese is melted and golden brown.
9) slice each pizza into 8 pieces.
10) serve with remaining barbecue sauce mixture.
11) serve with pickled jalapeno slices.

PPLM

basil, bread, butter, cod, garlic, eggplant, oil, onions, parmesan,
parmigiano, parsley, pepper, salt, tomatoes
catfish, cheese, egg, flour, milk, paprika, pepper

1) preheat oven to 400 degrees.
2) wash the potatoes and put them in a saucepan with the cream.
3) bring cream to a boil and add the parmigiano-cream cheese
and the cream and cream.
4) let simmer, stirring often, to make a soft creamy cream and
thick cream cheesecreamcream.
5) season with salt and pepper set aside. melt the cream cheese
and cream togethercream and cream together.
6) beat in the buttercreamcreamcreamcreamcreamcream is
verycreamcreamcreamcreamcreamcreamcreamcream.
7) creamcreamcreamcreamcreamcreamcreamcreamingcream-
creamcreamcreamcreamcreamcreamcream.


