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Abstract. Aging civil infrastructures are closely monitored by engineers
for damage and critical defects. As the manual inspection of such large
structures is costly and time-consuming, we are working towards fully
automating the visual inspections to support the prioritization of main-
tenance activities. To that end we combine recent advances in drone
technology and deep learning. Unfortunately, annotation costs are in-
credibly high as our proprietary civil engineering dataset must be anno-
tated by highly trained engineers. Active learning is, therefore, a valu-
able tool to optimize the trade-off between model performance and an-
notation costs. Our use-case differs from the classical active learning
setting as our dataset suffers from heavy class imbalance and consists
of a much larger already labeled data pool than other active learning
research. We present a novel method capable of operating in this chal-
lenging setting by replacing the traditional active learning acquisition
function with an auxiliary binary discriminator. We experimentally show
that our novel method outperforms the best-performing traditional ac-
tive learning method (BALD) by 5% and 38% accuracy on CIFAR-10
and our proprietary dataset respectively.

Keywords: Class Imbalance, Active Learning, Deep Learning, Neural
Networks

1 Introduction

Civil infrastructures are constantly being monitored for critical defects, as failure
to recognize deficiencies can end in disaster. Unfortunately, detailed inspections
are time-consuming, costly, and sometimes dangerous for inspection personnel.
We are working towards automating all aspects of visual inspections of civil
infrastructures by recent advances in drone technology [18, 6] that enable fast and
remote visual inspection of inaccessible structures such as wind turbines, water
dams, or bridges and simultaneous advances in instance segmentation using deep
learning models [28, 8, 36] that facilitate accurate detection of surface defects on
high resolution images. We are combining these novel technologies by utilizing
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drones equipped with high-resolution cameras to capture image material of the
structures and deep neural networks to detect defects. Our goal is to decrease the
duration of inspections, improve condition assessment frequency, and ultimately
minimize harm to human health.

It is relatively simple to collect large amounts of data of civil infrastructures
for our proprietary dataset. However, similar to many other projects applying
deep learning, annotating the collected samples is incredibly costly and time-
intensive as highly-trained engineers are required for the labeling process. To
minimize costs, a popular approach is to annotate a small portion of the dataset
first and then use Active Learning (AL) to select informative samples that should
be labeled next. The goal is to optimize a trade-off between additional annota-
tion cost (number of annotated samples) and an increase in model performance.
AL has been successfully applied in medical imaging [33, 24], astronomy [29],
and surface defect detection [9]. For its application in industry, we observe two
differences to the traditional AL setting:

First, previous research[11, 3, 20] has focused on starting the AL process with
little to no data (100 samples or cold start). In contrast, industry projects often
start the AL process with a larger pool of labeled training data: Despite the
high annotation costs, a random set of initial data is labeled for a proof of
concept. Only then data collection and labeling efforts are scaled up. In this
phase, the efficient selection of samples is invaluable. Unfortunately, traditional
AL strategies barely outperform random selection given a large initial dataset,
as shown in our experiments.

Secondly, most academic datasets are class balanced, with each class having
the same number of samples (e.g., CIFAR-10 [21] 5,000). In contrast, real-world
industry datasets usually suffer from a long-tailed class distribution [39, 25].
Moreover, the minority classes are often the most important ones. This is usually
the case for civil structures: dangerous/critical defects rarely appear on drone
scans of the structure as they are well maintained. Previous work on AL for
imbalanced data [4, 34, 22] has shown that classical AL methods fail to select
samples of the minority classes for heavily imbalanced datasets and therefore
fail to improve model performance for the minority classes. These works focus
on developing sample selection strategies that choose samples according to an
uncertainty-based metric or a diversity-based approach.

We present a novel method that effectively and efficiently selects minority
samples from a pool of unlabeled data for large datasets suffering from heavy
class imbalance. Contrary to other AL methods that try to find informative
samples from all classes, we limit ourselves to selecting samples for a single mi-
nority class, investing the total labeling budget for samples that improve model
performance for only that minority class. To this end, our method replaces the
AL acquisition function with a binary discriminator explicitly trained in a one-
vs-all fashion (minority vs. majority classes) to distinguish between unlabeled
minority and majority samples. In each cycle, the discriminator selects samples
to be labeled next according to the highest prediction scores. We experimentally
confirm that classical active learning methods fail to significantly improve model
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Fig. 1: Active Learning cycle: a model is trained on a pool of labeled data. Given
the model predictions and parameters, an acquisition function selects informative
samples from an unlabeled pool of data which are sent to the oracle for labeling.

performance for CIFAR-10 [21] and our proprietary civil engineering dataset 3.
Applying our method to our proprietary civil infrastructure dataset, we show a
minority class recall improvement of 32% and an overall accuracy gain of 14%
compared to the best-performing traditional AL method (BALD [17]).

2 Related Work

Active learning is a well studied problem [31, 13, 4] and especially advan-
tageous for applications with high annotation costs because highly specialized
annotators are needed. Active learning works by iterative selecting informative
samples according to a query strategy from an unlabeled pool of data. The cho-
sen samples are passed to the oracle (usually a human annotator) to be labeled.
The goal is to improve model performance as much as possible while labeling as
few samples as necessary. Settles et al. [31] identifies two different AL scenarios:
In sample-based selective sampling, a stream of samples arrives one after an-
other. Therefore, the algorithm decides whether to label or discard each sample
without information about samples arriving in the future. In contrast, in pool-
based active learning, the algorithm has access to the entire pool of unlabeled
samples and needs to select samples to be labeled next. Our work is set in the
second scenario.

Active Learning query strategies can be divided into geometric-based and
uncertainty-based methods. Geometric-based approaches make use of the under-
lying feature space to select informative samples. Feature embeddings are neces-
sary to have a meaningful feature space for an application to high-dimensional
input data such as images. For our application, we focus on uncertainty-based
methods as we assume that there is no pre-trained model available that can be
used as an embedding. There is a wide variety of work on uncertainty estimation
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of deep neural networks [12]. Two popular methods that estimate uncertainty by
generating multiple predictions on the same input are ensembling multiple mod-
els [23] or using Dropout as a bayesian approximation [11]. As the first option
is highly compute-intensive, we make use of the second one for this work.

Uncertainty-based acquisition functions judge a samples informativeness
based on model uncertainty. The Entropy acquisition function [32] chooses sam-
ples that maximise the predictive entropy, BALD [17] selects data points that
are expected to maximise the information gained about the model parameters,
Variation Ratios [10] measures lack of confidence. BatchBALD [20] improves
on BALD by selecting sets of samples that are jointly informative instead of
choosing data points that are informative individually. As BatchBALD is im-
practically compute-intensive for large batches and BALD has been shown to
outperform other older methods, we focus only on Entropy and BALD for our
experiments.

Imbalanced datasets have been widely studied (see Kaur et al. [19] for an
extensive overview). Prior work frequently utilizes resampling techniques (e.g.,
oversampling and undersampling, or a combination of both) to balance the train-
ing data. While Hernandez et al. [16] show that simple resampling techniques
can significantly improve model performance, Mohammed et al. [27] conclude
that undersampling may discard informative majority class samples and there-
fore decrease majority class performance. There are synthetic sampling methods
(SMOTE [7], ADSYN [14]) that generate new samples by interpolating in the
underlying feature space. However, the underlying input feature space is too com-
plex for image data to apply these methods successfully. Weighting samples ac-
cording to inverse class frequency has also been successfully applied to prioritize
underrepresented classes in training. For our work, we exclusively use oversam-
pling as combining duplication of samples with image augmentation techniques
results in a much more diverse set of minority samples than weighting the classes.
One disadvantage of this method is the resulting much larger training pool and
the longer training times compared to the class-weighted approach.

3 Background

As mentioned above, we work towards automating visual inspections of civil in-
frastructures. We have developed an automated inspection pipeline consisting
of 4 consecutive stages: First, drones capture grids of high-resolution images,
which are later stitched into full image scenes. Next, state-of-the-art deep learn-
ing methods analyze the image scenes and highlight defects such as cracks or
rust. Finally, the size of detected defects is measured with a precision of 0.1mm.
The pipeline’s output supports civil engineers in prioritizing further in-person
inspections and maintenance activities.
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Fig. 2: DJI Matrix 300 Hi-Res Grid: example of a 7-grid of 98 high-resolution
images. Each individual image is 5184× 3888 pixel in size resulting in a overall
data size for a single pillar face of almost 1GB.

3.1 Image Data

We have collected a civil infrastructure dataset consisting of high-resolution im-
ages of concrete bridge pillars. The data was collected in 2021 by certified drone
pilots using DJI Matrix 300 [1] drones equipped with a Zenmuse H20 [2] lens at-
tachment. Scenes were captured using DJI’s Hi-Res Grid Photo mode as shown
in Fig. 2. Drone pilots manually mark the area of the civil structure under in-
spection on an overview image. While hovering in place, the drone captures a
grid of overlapping images by gimbaling the zoom lens. In total, 22 bridge pillars
were scanned from each side, resulting in a dataset of over 22’000 raw images
(5184× 3888 pixels).

3.2 Instance Segmentation Annotations

In light of our focus on defect detection, we have invested considerable effort in
creating a high-quality instance segmentation dataset where each defect is cat-
egorized and localized using mask annotations. In collaboration with our civil
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engineering experts, we developed extensive annotation guidelines focusing on
the following six defect categories: rust, spalling, cracks, cracks with precipita-
tion, net-cracks, and algae (see Fig. 3 for examples). Over six months, a team of
annotators labeled 2500 images resulting in around 14’000 defect annotations.
Given the well-maintained condition of the inspected structure, critical defects
such as rust or cracks with precipitation appear infrequently. Consequently, our
dataset suffers from a long-tailed class distribution with a maximum imbalance
ratio of 1 to 130 (cracks with precipitation vs. cracks).

4 Method

This section first describes our novel method which replace the acquisition func-
tion with a binary discriminatory trained on the labeled pool to select minority
class samples from the unlabeled pool. Secondly, it describes the dataset conver-
sion algorithm which we use to convert our proprietary instance segmentation
dataset to a classification dataset for the experiments.

4.1 Active Learning for heavily imbalanced data

The goal of the classical AL setting is to improve the model performance by
labeling additional informative samples. A model is trained on the initial pool
of labeled data. Given the model’s predictions and parameters, an acquisition
function determines which samples from the unlabeled pool are sent to the or-
acle for labeling. The newly annotated samples are then added to the labeled
pool, after which the cycle begins again by retraining the model. Traditional AL
methods [11, 17, 3, 20] strive to select samples for which the model performance
for all classes improves most.

In contrast, we focus on improving model performance for a single pre-
selected minority class. Given the high class imbalance of the initial AL dataset,
we hypothesize that we do not need to find the most diverse or informative set
of samples but that selecting and labeling any samples of the minority class
will improve model performance. Therefore, our method replaces the traditional
uncertainty-based AL acquisition function with an auxiliary binary classifier
acting as a discriminator between the minority and majority classes. The dis-
criminator is trained on the labeled AL pool in each cycle. Its predictions on
the unlabeled pool are used to select samples for labeling. Selection is based on
prediction scores, choosing the top-K samples.

For the training of the binary discriminator, binary labels are computed
from the original multi-class training set in a one-vs-all fashion. As a result, the
binary classification dataset is even more imbalanced than the original multi-
class dataset. We improve discriminator performance by combating the bias
of the class imbalance by applying the following modifications to the training
procedure:

– oversample the positive class (the original minority class) until we reach
balance with respect to the negative class (all majority classes);
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– apply standard image augmentation techniques (flip, shift, scale, rotate,
brightness, and contrast - see Albumentations [5]). As we apply the aug-
mentations to the large number of minority samples generated from the
oversampling in the first step, we end up with a highly diverse set of minor-
ity class samples;

– apply batch augmentations (MixUp [38], CutMix [37] - see timm [35] li-
brary) to further diversify the samples in each batch stabilizing the training
procedure of the binary discriminator.

4.2 Instance segmentation to classification dataset conversion

As mentioned in section 3, we are working towards automated detection of sur-
face defects for civil infrastructures. We train instance segmentation models on
the original dataset with instance mask annotations to detect the defects. Our
annotations must be labeled with extraordinary precision due to the defects be-
ing of such small size (e.g., cracks in the order of millimeters). This additional
time effort adds to the already high prize per annotation. Therefore, we have
been working on a technique to use weakly supervised learning with class-level
supervision to generate class activation maps (CAMs [30]) from which we ex-
tract fine segmentation masks. Unfortunately, there are still high annotation
costs associated with class-level labels. We are trying to decrease these costs
with active learning in this work. Consequently, we use class-level labels for our
experiments which we extract from the original instance segmentation dataset
using a patch-based dataset conversion algorithm.

The conversion algorithm works by extracting fixed-size patches from the
original images. Intuitively, a patch can be assigned to a category if it depicts a
piece of the original class; this can be either shape or texture. While the texture
is informative enough for some objects to attribute the correct class, others
are only correctly classifiable with information about their shape. As extracted
patches only offer a small window into the original image, an object’s shape
information can be easily lost if a too small patch size is chosen.

The algorithm processes one image at a time: multiple patches are sam-
pled for each instance and assigned the corresponding category. Additionally,
patches are extracted from regions of the original image that do not contain
any instances/defects and are assigned to an additional, newly introduced class
“Background”. We randomly sample instance patches such that the center point
of the patch lies within the instance annotation and background patches such
that the center point lies anywhere within the original image’s borders. The al-
gorithm rejects a sampled patch if it violates one of the following criteria: 1) it
overlaps with an already chosen valid patch, 2) it intersects with an instance an-
notation belonging to a different category, 3) the patch breaches the boundaries
of the original image. The algorithm extracts patches until the total number
of required patches is reached or until the algorithm exceeds a total number of
sampling attempts. Figure 3 shows the sampled patches for an example image
as well as one example patch per category.
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Crack precipitation SpallingCrack Net-CrackAlgea Rust Background

Fig. 3: Patch-based classification dataset conversion algorithm: we show instance
segmentation polygons of the original image colored by class (red crack, yellow
crack with precipitation, black background) and sampled patch boarders with
the same color scheme. Below, we show one example patch per category of the
original dataset plus one example patch for the additional background class.

5 Evaluation

In this section we first describe how we convert the image segmentation to a clas-
sification dataset with our patch extraction method to prepare our proprietary
dataset. Then, we experimentally show how traditional active learning meth-
ods fail to improve minority class performance as the initial training data size
increases. Finally, we run experiments showcasing model performance for tradi-
tional active learning methods, as well as our proposed method on CIFAR-10
and on the civil engineering classification dataset.
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(a) Instance segmentation dataset (b) Extracted classification dataset

Fig. 4: Class distribution of our civil infrastructure datasets: (a) shows statistics
for our original instance segmentation dataset while (b) describes statistics for
the classification dataset extracted with the path-based algorithm from the in-
stance segmentation dataset (a). The additional background class in Figure (a)
is a result of the background patch sampling of the algorithm.

5.1 Civil infrastructure classification dataset

We apply our instance segmentation to classification dataset conversion algo-
rithm (see section 4.2), extracting 160× 160 pixel patches. Per image, the algo-
rithm attempts to sample 100 class-patches and 10 background-patches with a
maximum of 100 sampling attempts. The resulting classification dataset consists
of a total of 67’162 samples. Fig. 4 shows the class distribution for the original
instance segmentation dataset and for the extracted classification dataset. Both
suffer from heavy class imbalance.

We need a large enough dataset for our experiments to simulate a real-world
active learning scenario with a small labeled and a large unlabeled pool. Accord-
ingly, each category included in the final dataset has to contain enough samples
such that it is possible to introduce artificial imbalance for each class during our
experiments. Therefore, we remove all classes with less than 5’000 samples (crack
with precipitation, rust). Additionally, we remove the net-crack class due to the
visual similarity of its patches with the crack class. The final dataset consists
of four classes: background, algae, crack, and spalling. It is split in a stratified
fashion into 70% training set and 30% test set.

5.2 Experiment setup

Active learning datasets We aim to simulate a real-world active learning
scenario with a small pool of labeled data and a large pool of unlabeled data,
as well as an oracle that can be queried for labels. Artificial class imbalance is
introduced into the labeled and the unlabeled pool to simulate the imbalanced
dataset setting dependent on the experiment. For the experiments, the original
training set is consequently randomly split into a small labeled set, a large unla-
beled set, and an unused set. As we still have access to the labels of the samples
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of the unlabeled pool, we can simulate human annotation when the active learn-
ing algorithm queries labels. Furthermore, once samples have been moved from
the unlabeled pool to the labeled pool (simulated labeling process), we can sim-
ulate a much larger unlabeled pool by moving the same number of samples per
class from the unused pool to the unlabeled pool, restoring the original unlabeled
data pool size and class balance. Finally, the test set is used as-is to evaluate
the models after each time the AL algorithm queries new samples.

Model training We use the full ResNet18 [15, 35] as a model backbone for
our civil infrastructure dataset, but only use the first ResNet block for CIFAR-
10 [21]. All models are trained for 50 epochs to convergence with the AdamW [26]
optimizer with a learning rate of 0.0005 with the sample and batch augmen-
tations highlighted above. For a fair comparison between the traditional AL
methods and ours, we train all models with the improved training procedure of
oversampling, image and batch augmentations.

Active learning process We apply our method and traditional AL algorithms
to each dataset under investigation. AL algorithms query labels five times for
200 samples per cycle. Each experiment is repeated three times selecting a class
from the original dataset as the minority class for the artificially introduced
imbalance procedure. All experiments use different randomly initialised model
weights and a different random split of the data (labeled and unlabeled pool
with artificial imbalance).

5.3 Results

Influence of initial training pool size As a first experiment we evaluate
all methods on CIFAR-10 [21] with increasing number of samples in the initial
labeled pool. We create artificially imbalanced training datasets with a increasing
number of samples for the majority class from 500 to 1500 while keeping the
number of minority class samples constant at 50. To minimize the impact of the
unlabeled set, it is kept constant with 120 minority samples and 3000 majority
samples. Finally, we run the AL cycle for five rounds, selecting and labeling
200 samples per cycle. We measure the change in performance from the initial
trained model to the model at the end of the AL procedure. As can be seen
in Fig. 5, the delta in minority class performance drops off significantly for
traditional active learning methods as the initial training dataset size increases.
In contrast, our method retains more of the original performance gains as it is
less sensitive to the initial data pool size. Specifically, the recall delta remains
above zero as initial data size decreases while the classical AL method fall below
zero, signaling a decrease in performance from the initial training set to the set
with the additional 1000 labeled samples.

CIFAR-10 Next, we evaluate absolute model performance on CIFAR-10 [21],
comparing traditional AL methods (BALD [17], Entropy [32]) with our novel
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Fig. 5: Influence of initial AL training pool size: we report relative minority class
performance gains for four dataset sizes with an increasing number of majority
samples in the initial AL training pool. Performance differences are evaluated
for each method, comparing model performance before the AL procedure with
model performance after the procedure queried labels for 1000 samples. While
performance gains of traditional AL methods decrease as the training dataset
grows, our method retains more of the original performance increase.

method on model performance. Additionally, we also include a random acqui-
sition function as a baseline. We create an initial AL dataset that is randomly
split into unlabeled and labeled pool for each experiment with an artificial class
imbalance of 50 minority samples to 1000 majority samples per class. The un-
labeled pool consists of 300 minority samples and 3000 majority samples per
class. Results in Fig. 6a show that traditional AL methods fail to significantly
improve precision and recall for the minority class. Additionally, little perfor-
mance improvement can be seen for the majority classes. We explain this with
our experiments’ much larger initial training pool compared to other publica-
tions. Our initial training set consists of few minority samples but a considerable
amount of majority samples. The 200 additionally labeled samples per cycle do
not yield much additional information compared to the existing larger training
pool. Therefore, neither majority nor minority class performance improves. In
contrast, our method focuses only on the minority class, for which only a few
samples are in the initial training pool. Therefore, even a few minority samples
yield enough information to improve minority class performance considerably.
Our method shows a clear performance improvement compared to traditional
AL methods. Compared to the random baseline, our method improves on aver-
age by 25% recall of the minority class, while BALD only improves by 5% and
the entropy method only improves by 0.3%. As a result, the overall accuracy of
the model also increases significantly: 5% average improvement over the random
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(a) CIFAR-10

(b) Civil engineering dataset

Fig. 6: Absolute model performance throughout the AL process: for each cycle,
after labeling 200 additional samples, we report precision and recall for the mi-
nority class, macro average precision and recall for the majority classes, and
overall accuracy for the CIFAR-10 dataset and our proprietary civil infrastruc-
ture dataset. Error bands show the standard error of the mean (SEM).

baseline for our method, compared to only 0.6% for BALD and a 0.5% decrease
for the entropy method.

Civil engineering dataset We evaluate absolute model performance on our
proprietary civil engineering dataset (see section 5.1). We run experiments on
an initial AL dataset with 50 minority and 1000 majority samples per class in
the training set. The unlabeled pool consists of 300 minority and 2500 majority
samples per class. As with CIFAR-10, the results in Fig. 6b show that tradi-
tional AL methods fail to improve precision and recall for the minority class.
Meanwhile, our method shows clear improvement in minority class recall and
precision as well as overall accuracy. Compared to the results on CIFAR-10,
we see a larger performance improvement: compared to the random baseline our
method improves by 38% minority recall, 18% minority precision, and 16% over-
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all accuracy. BALD only improves by 6% minority recall and 2% overall accuracy
while minority precision decreases by 4%. The entropy method improves only by
3% minority recall, 4% minority precision and 1% overall accuracy. We explain
the higher overall accuracy gains compared to CIFAR-10 with the smaller num-
ber of classes in our dataset (4 compared to 10 in CIFAR-10). Given the overall
accuracy is an average of class-specific performance, minority class improvement
has a much larger impact on the majority classes.

6 Conclusion

We have presented a novel active learning method that replaces the traditional
acquisition function with an auxiliary binary discriminator allowing the selection
of minority samples even for initially large and imbalanced datasets. We have
experimentally shown that our method outperforms classical AL algorithms on
artificially imbalanced versions of CIFAR-10 and our proprietary civil engineer-
ing dataset when evaluated on minority class recall, precision, and overall classi-
fication accuracy. Consequently, our method facilitates the successful discovery
and labeling of rare defects in the yet unlabeled pool of samples for our pro-
prietary civil engineering dataset. Trained on the additional labeled data, our
visual inspection defect detection models improve at supporting civil engineers’
maintenance prioritization decisions for rare but critical defects.

Due to the large number of models trained per experiment, we are limited to
dataset consisting of small images with many classes or large images with few
classes. Additionally, our choices of datasets for experimentation were limited
as we required many samples per class to simulate a large unlabeled pool. This
excluded many popular large datasets as they often consist of many classes with
a moderate amount of samples per class.

While we focus on classification datasets in this work, future research could
extend our method to an application for the full instance segmentation dataset by
creating sliding window patches and aggregating statistics over the full original
image. Additionally, it would be interesting to develop our method further to
work with multiple minority classes at a time. Finally, research should compare
our method with feature space diversity-based AL methods when a pre-trained
model (transfer learning or self-supervised learning) is available.
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