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Recent studies have shown that providing personalized explanations alongside recommendations increases trust and perceived quality.

Furthermore, it gives users an opportunity to refine the recommendations by critiquing parts of the explanations. On one hand, current

recommender systems model the recommendation, explanation, and critiquing objectives jointly, but this creates an inherent trade-off

between their respective performance. On the other hand, although recent latent linear critiquing approaches are built upon an existing

recommender system, they suffer from computational inefficiency at inference due to the objective optimized at each conversation’s

turn. We address these deficiencies with M&Ms-VAE, a novel variational autoencoder for recommendation and explanation that is

based on multimodal modeling assumptions. We train the model under a weak supervision scheme to simulate both fully and partially

observed variables. Then, we leverage the generalization ability of a trained M&Ms-VAE model to embed the user preference and the

critique separately. Our work’s most important innovation is our critiquing module, which is built upon and trained in a self-supervised

manner with a simple ranking objective. Experiments on four real-world datasets demonstrate that among state-of-the-art models,

our system is the first to dominate or match the performance in terms of recommendation, explanation, and multi-step critiquing.

Moreover, M&Ms-VAE processes the critiques up to 25.6x faster than the best baselines. Finally, we show that our model infers coherent

joint and cross generation, even under weak supervision, thanks to our multimodal-based modeling and training scheme.
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1 INTRODUCTION

Recommender systems accurately capture user preferences and achieve high performance. However, they offer little

transparency regarding their inner workings. It has been shown that providing explanations along with item recommen-

dations enables users to understand why a particular item has been suggested and hence to make better decision [3, 6].

Additionally, explanations increase the system’s overall transparency and trustworthiness [21, 40, 49].

An important advantage of explanations is that they provide a basis for feedback. If users understand what has

generated the suggestions, they can refine the recommendations by interacting directly with the explanations. Cri-

tiquing is a conversational recommendation method that incrementally adapts recommendations in response to user

preferences [8]. Example critiquing was introduced in information retrieval [44] and first applied to recommender

systems in [5]. Recognizing that critiquing is most useful when applied in multiple steps, [24] and [29] introduced

mechanisms based on constraint programming [41] with an application to travel planning. Multi-step critiquing with

constraint programming was recognized as a form of preference elicitation, which enabled the analysis and optimization

of its performance [13] and the addition of suggestions for active preference elicitation [43], which yielded dramatic

improvements in decision accuracy in user studies. Multi-step critiquing was also shown to be superior to compound
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critiquing, which groups multiple attributes in a single step [31]. A major limitation of all these approaches is that items

have to be characterized by a set of discrete attributes.

After nearly a decade in which critiquing approaches received little attention, [45] introduced a collaborative filtering

recommender with explanations and an embedding-based critiquing method. This method allows users to critique the

recommendation using arbitrary languages; a set of attributes is mined from reviews, and the users can interact with

them. Other works built upon the same paradigm [2, 9]. [26] showed that those models suffer from unstable training and

high computational complexity, and they proposed a framework based on a variational autoencoder [20, 23]. However,

these models learn a bidirectional mapping between the critique and the user latent space. This creates an inherent

trade-off between the recommendation and explanation performance, and it yields poor results in multi-step critiquing.

Recently, [25] proposed a latent linear critiquing (LLC) method built upon the recommendation model PLRec [35].

LLC co-embeds keyphrase attributes in the same embedding space as the recommender. The critiquing process

consists of a weighted average between the user-preference embedding and the critique embeddings obtained through

the conversation. The weights are optimized in a linear programming formulation using a max-margin scoring-based

objective (i.e., the pairwise difference of scores of items affected by the critique and the others). Following the same

methodology, [22] changed the objective into a ranking-based one. While those models obtain good performance in

multi-step critiquing, they suffer from computational inefficiency due to the objective function optimized at each turn.

To address both issues, we present M&Ms-VAE, a novel variational autoencoder for recommendation and explanation

with a separate critiquing module. Inspired by multimodal generative models [37, 39, 42, 47], we treat the user’s past

interactions and keyphrase usage as different partially observed variables, and more importantly, we assume conditional

independence between them. We can then approximate the variational joint posterior using a mixture of experts. We

propose a training scheme that mimics weakly supervised learning to train the inference networks jointly but also

independently. This is essential to our modeling, because M&Ms-VAE is robust to a missing unobserved variable and

can thus embed separately and efficiently the user interactions, the keyphrases, and the critique, respectively.

In a second step, we leverage the generalization ability of M&Ms-VAE and design a novel blending module to re-rank

recommended items according to a critique. The latter is trained only once on a synthetic dataset with a self-supervision

objective. This generalizes into multi-step critiquing and enables fast critiquing.

To the best of our knowledge, this is the first work to revisit deep critiquing from the perspective of multimodal gener-

ative models and to propose a blending module trained in a simple self-supervised fashion.We evaluate our method using

four real-world datasets. The results demonstrate that the proposed M&Ms-VAE model (1) achieves superior or compet-

itive performance in terms of recommendation, explanation, and multi-step critiquing in comparison to the state-of-

the-art recommendation and critiquing methods, (2) processes the critiques up to 26x faster than the best baselines and

up to 9x faster using only the CPU, and (3) induces coherent joint and cross generation, even under weak supervision.

2 PRELIMINARIES

This section introduces the notation used in the paper and the variational autoencoder for recommendation [23]. Then,

we review a recent study [26] that built upon [23] and revisited critiquing by proposing the critiquable-explainable

VAE (CE-VAE) model. Finally, we highlight the key deficiencies that significantly limit its performance in practice.

2.1 Notation

Before proceeding, we define the following notation used throughout this paper:
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• 𝑈 , 𝐼 , and 𝐾 : The user, the item, and the keyphrase sets, respectively.

• 𝑹 ∈ R |𝑈 |× |𝐼 | : The user-by-item interactionmatrix obtained with implicit feedback. Entries 𝒓𝑢,𝑖 of 1 (respectively 0)

denote a positive (respectively negative or unobserved) interaction between the user 𝑢 and item 𝑖 .

• 𝑲 ∈ R |𝑈 |× |𝐾 | : The binary user-keyphrase matrix that reflects the user 𝑢’s keyphrase-usage preference. Given

user reviews from a corpus, we extract keyphrases that describe item attributes from all reviews (see Section 4.1).

• 𝑲 𝑰 ∈ R |𝐼 |× |𝐾 | : The binary item-keyphrase matrix. The process is similar to 𝑲 with the aggregation per item.

• 𝒓𝑢 ∈ R |𝐼 | and �̂�𝑢 ∈ R |𝐾 | : The predicted feedback and keyphrase explanation, respectively.

• 𝒛𝑢 ∈ R |𝐻 | : The user 𝑢’s latent embedding of dimension 𝐻 from the observed interaction 𝒓𝑢 and keyphrase-usage

preference 𝒌𝑢 .

• 𝒄𝑡𝑢 ∈ R |𝐾 | : A one-hot vector of length |𝐾 |. The only positive value indicates the index of the keyphrase to be

critiqued by the user 𝑢 at a given step 𝑡 of the user interaction with the recommender system.

• 𝒛𝑡𝑢 ∈ R |𝐻 | : The latent representation of the critique 𝒄𝑡𝑢 .

• �̃�𝑡𝑢 ∈ R |𝐻 | : The updated latent representation of the user after the critique 𝒄𝑡𝑢 .

• 𝐼+𝒄 ∈ {𝑖 |𝒌𝐼
𝑖,𝒄 = 1,∀𝑖 ∈ 𝐼 }: The set of items that contain the critiqued keyphrase 𝒄 .

• 𝐼−𝒄 ∈ {𝑖 |𝒌𝐼
𝑖,𝒄 = 0,∀𝑖 ∈ 𝐼 }: The set of items that do not contain the critiqued keyphrase 𝒄 .

2.2 Variational Autoencoder for Recommendation (VAE)

A variational autoencoder (VAE) [20] is a generative model of the form 𝑝𝜃 (𝒙, 𝒛) = 𝑝 (𝒛)𝑝𝜃 (𝒙 |𝒛), where 𝑝 (𝒛) is a prior
and the likelihood 𝑝𝜃 (𝒙 |𝒛) is parametrized by a neural network with parameters 𝜃 . The model learns to maximize the

marginal likelihood of the data 𝑝𝜃 (𝒙) (i.e., the evidence that is intractable) by approximating the true unknown posterior

𝑝𝜃 (𝒛 |𝒙) with a variational posterior 𝑞𝜙 (𝒛 |𝒙). Applied to recommendation systems, the collaborative-filtering VAE [23]

considers as input data the sparse user preferences 𝒓𝑢 over |𝐼 | items. More formally, the model optimizes a variational

lower bound on the log likelihood of all observed user feedback

∑
𝑢∈𝑈 log𝑝 (𝒓𝑢 ) through stochastic gradient descent:

log𝑝 (𝒓𝑢 ) ≥
∫
𝒛𝑢
𝑞𝜙 (𝒛𝑢 |𝒓𝑢 ) log

𝑝𝜃 (𝒓𝑢 , 𝒛𝑢 )
𝑞𝜙 (𝒛𝑢 |𝒓𝑢 )

𝑑𝒛𝑢 ≥ E𝑞𝜙 (𝒛𝑢 |𝒓𝑢 )
[
log𝑝𝜃 (𝒓𝑢 |𝒛𝑢 )

]
− 𝛽 DKL

[
𝑞𝜙 (𝒛𝑢 |𝒓𝑢 ) | | 𝑝 (𝒛𝑢 )

]
, (1)

where 𝒛𝑢 is sampled
1
from the distribution 𝑞𝜙 (𝒛𝑢 |𝒓𝑢 ) with parameters 𝝁𝑢 and 𝚺𝑢 , and DKL [𝑞, 𝑝] denotes the Kullback-

Leibler divergence (KL) between the distributions 𝑝 and 𝑞. In practice, the prior 𝑝 (𝒛) is usually a spherical Gaussian

with parameters 𝝁 and 𝚺. Finally, 𝛽 is a hyperparameter that controls the strength of the regularization relative to the

reconstruction error, as motivated by the 𝛽-VAE of [18], and is slowly annealed to 1, similarly to [4].

2.3 Co-embedding of Language-based Feedback with the Variational Autoencoder (CE-VAE)

Thus far, the variational autoencoder can only recommend items without generating any form of explanation. A recent

study [26] proposed the CE-VAE model, which integrates an explanation and critiquing module based on keyphrases.

The authors support critiquing by first modeling the joint probability of a user’s item preferences and keyphrase usage:

log𝑝 (𝒓𝑢 , 𝒌𝑢 ) = log𝑝 (𝒌𝑢 |𝒓𝑢 ) + log𝑝 (𝒓𝑢 ) = E𝑞Φ𝑟 (𝒛𝑢 |𝒓𝑢 )
[
log 𝑝Θ𝑘 (𝒌𝑢 |𝒛𝑢 )

]
− DKL

[
𝑞Φ𝑟 (𝒛𝑢 |𝒓𝑢 ) | | 𝑝 (𝒛𝑢 )

]
(2)

+ E𝑞Ψ𝑟 (𝒛𝑢 |𝒓𝑢 )
[
log𝑝Θ𝑟 (𝒓𝑢 |𝒛𝑢 )

]
+ H

[
𝑞Ψ𝑟 (𝒛𝑢 |𝒓𝑢 )

]
+ E𝑞Ψ𝑟 (𝒛𝑢 |𝒓𝑢 )

[
𝑝 (𝒛𝑢 )

]
,

whereH is the entropy. Then, they incorporate an additional objective to learn a projection from the critiquing feedback

into the latent space via another encoder (an inverse feedback loop). In other words, they reintroduce the user’s

1
Using the reparametrization trick [20, 33]: 𝒛𝑢 = 𝝁𝑢 + 𝜖𝝈𝑢 , where 𝜖 ∼ N(0, I𝐻 ) .
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keyphrase usage 𝒌𝑢 to approximate the variational lower bound of 𝑝 (𝒛𝑢 ) by marginalizing over 𝒌𝑢 . More formally:

log𝑝 (𝒛𝑢 ) ≥ E𝑞 (𝒌𝑢 |𝒛𝑢 )
[
log𝑝 (𝒛𝑢 |𝒌𝑢 )

]
− DKL

[
𝑞(𝒌𝑢 |𝒛𝑢 ) | | 𝑝 (𝒌𝑢 )

]
(3)

≈ E𝑝Θ𝑘 (𝒌𝑢 |𝒛𝑢 )
[
log 𝑝Θ′

𝑘
(𝒛𝑢 |𝒌𝑢 )

]
− DKL

[
𝑝Θ𝑘 (𝒌𝑢 |𝒛𝑢 ) | | 𝑝 (𝒌𝑢 )

]
,

where 𝑝 (𝒌𝑢 ) is a prior following a standard normal distribution and the weights of 𝑞(𝒌𝑢 |𝒛𝑢 ) are shared with 𝑝Θ𝑘 (𝒌𝑢 |𝒛𝑢 ).
Finally, once the model is trained on the full objective function, the critiquing process for the critique 𝒄𝑢 is performed

as follows: (1) compute the critique representation 𝒛𝑐𝑢 with 𝑝Θ′
𝑘
(𝒛𝑢 |𝒌𝑢 ), (2) average both the user latent representation 𝒛𝑢

and the critique representation 𝒛𝑐𝑢 , and (3) predict the new feedback 𝒓𝑢 with the generative network 𝑝Θ𝑟 (𝒓𝑢 |𝒛𝑢 ).
Overall, the CE-VAE framework is effective in practice for recommendation, keyphrase explanation, and single-step

critiquing. However, it suffers from two key deficiencies that limit its performance (as we later show empirically):

(1) Themodel learns a function to project the critiqued keyphrase into the user’s latent space, fromwhich the feedback

and the explanation are predicted. This mapping is learned via an autoencoder, which perturbs the training.

Thus, there is an inherent trade-off between the performance of the recommendation and that of the explanation.

(2) Although the joint objective also maximizes a latent representation likelihood with the Kullback-Leibler terms, it

is unclear whether the inverse function embeds the critique effectively and whether the mean reflects a critiquing

mechanism.

3 M&MS-VAE: A MIXTURE-OF-EXPERTS MULTIMODAL VARIATIONAL AUTOENCODER

Our goal is to build a more generalizable representation of users’ preferences that is based on their observed interactions

and keyphrase usage. Figure 1 depicts the graphical model of our proposed M&Ms-VAE, and Figure 2 shows the training

scheme. Then, we leverage this representation to efficiently embed the user critiques and learn, in a self-supervised

fashion, a blending module to re-rank recommended items for multi-step critiquing. Figure 3 illustrates the workflow.

3.1 Model Overview

Like previously developed variational autoencoders for recommendation, we assume that the observed user 𝑢’s

interactions 𝒓𝑢 and the keyphrase-usage preference 𝒌𝑢 are generated from a latent representation of the user preferences.

Differently from prior work, we seek to learn the joint distribution 𝑝 (𝒓𝑢 , 𝒌𝑢 ) under weak supervision. Our main goal is

to learn a more generalizable representation of the user preferences. Therefore, we aim to design a generative model that

can recommend and generate keyphrase explanation jointly but also independently from each of the observed vari-

ables (i.e., cross-modal generation). It also allows us to apply the same technique to users who have not written reviews

or to cases in which keyphrases are unavailable. If this goal is achieved, we can then embed effectively the user’s

observed interactions, the user’s keyphrase preference, and the critique with the same inference network 𝑞Φ (𝒛𝑢 |𝒓𝑢 , 𝒌𝑢 ).
Inspired by multimodal generative models [37, 39, 42, 47], we treat 𝒓𝑢 and 𝒌𝑢 as different modalities, and we assume

they are conditionally independent given the common latent variable 𝒛𝑢 . In other words, we assume a generative model

of the form 𝑝Θ (𝒓𝑢 , 𝒌𝑢 , 𝒛𝑢 ) = 𝑝 (𝒛𝑢 )𝑝Θ𝑟 (𝒓𝑢 |𝒛𝑢 )𝑝Θ𝑘 (𝒌𝑢 |𝒛𝑢 ). An advantage of such a factorization is that if 𝒓𝑢 or 𝒌𝑢 is

unobserved, we can safely ignore it when evaluating the marginal likelihood [47].

We start with the derivation of the joint log likelihood

∑
𝑢∈𝑈 log𝑝 (𝒓𝑢 , 𝒌𝑢 ) over the observed interactions 𝒓𝑢 and

keyphrase-usage preference 𝒌𝑢 and all users 𝑢 as shown in Figure 1:

log 𝑝 (𝒓𝑢 , 𝒌𝑢 ) = log

∫
𝒛𝑢
𝑝Θ (𝒓𝑢 , 𝒌𝑢 , 𝒛𝑢 )𝑑𝒛𝑢 ≥ E𝑞Φ (𝒛𝑢 |𝒓𝑢 ,𝒌𝑢 )

[
log 𝑝Θ (𝒓𝑢 , 𝒌𝑢 |𝒛𝑢 )

]
− 𝛽 DKL

[
𝑞Φ (𝒛𝑢 |𝒓𝑢 , 𝒌𝑢 ) | | 𝑝 (𝒛𝑢 )

]
, (4)
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Fig. 1. Probabilistic-graphical-model view of our proposed
M&Ms-VAE model. Both the implicit feedback 𝒓𝑢 and the
keyphrase 𝒌𝑢 are generated from user 𝑢’s latent represen-
tation 𝒛𝑢 . Solid lines denote the generative model, whereas
dashed lines denote the variational approximation. ∀"
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Fig. 2. The proposed M&Ms-VAE architecture and training scheme.
Each pass infers the parameters 𝝁𝑢 and𝝈𝑢 with themixture of experts
using either the joint inference network 𝑞Φ (𝒛𝑢 |𝒓𝑢 ,𝒌𝑢 ) or one of the
individual networks (𝑞Φ𝑟 (𝒛𝑢 |𝒓𝑢 ) or 𝑞Φ𝑘 (𝒛𝑢 |𝒌𝑢 ) , respectively). The
final gradient is computed on the sum of each 𝐸𝐿𝐵𝑂 ( ·) term.

where we assume that the prior distribution 𝑝 (𝒛) is a standard normal distribution and 𝛽 is a hyperparameter that

controls the strength of the regularization relative to the reconstruction error. Thanks to our assumption that 𝒓𝑢 and 𝒌𝑢

are conditionally independent given the common latent variable 𝒛𝑢 , we can rewrite Equation 4 as follows:

𝐸𝐿𝐵𝑂 (𝒓𝑢 , 𝒌𝑢 ) = E𝑞Φ (𝒛𝑢 |𝒓𝑢 ,𝒌𝑢 )
[
log𝑝Θ𝑟 (𝒓𝑢 |𝒛𝑢 ) + log𝑝Θ𝑘 (𝒌𝑢 |𝒛𝑢 )

]
− 𝛽 DKL

[
𝑞Φ (𝒛𝑢 |𝒓𝑢 , 𝒌𝑢 ) | | 𝑝 (𝒛𝑢 )

]
. (5)

Learning the variational joint posterior 𝑞Φ (𝒛𝑢 |𝒓𝑢 , 𝒌𝑢 ) of Equation 5 under its current form requires 𝒓𝑢 and 𝒌𝑢

to be presented at all times, thus making cross-modal recommendation difficult. Following our assumption, we can

factorize the joint variational posterior as a function 𝜁 (·) of unimodal posteriors (or experts) 𝑞Φ𝑟 (𝒛𝑢 |𝒓𝑢 ) and 𝑞Φ𝑘 (𝒛𝑢 |𝒌𝑢 ):
𝑞Φ (𝒛𝑢 |𝒓𝑢 , 𝒌𝑢 ) = 𝜁

(
𝑞Φ𝑟 (𝒛𝑢 |𝒓𝑢 ), 𝑞Φ𝑘 (𝒛𝑢 |𝒌𝑢 )

)
, similarly to [37, 39, 42, 47]. In our case, the function 𝜁 (·) should be (1) robust

to overconfident experts if the marginal posterior 𝑞Φ𝑟 (𝒛𝑢 |𝒓𝑢 ) or 𝑞Φ𝑘 (𝒛𝑢 |𝒌𝑢 ) has low density, and (2) robust to missing

unobserved variable 𝒓𝑢 or 𝒌𝑢 . Therefore, we propose to rely on a mixture of experts (MoE) with uniform weights:

𝜁
(
𝑞Φ𝑟 (𝒛𝑢 |𝒓𝑢 ), 𝑞Φ𝑘 (𝒛𝑢 |𝒌𝑢 )

)
= 𝛼 · 𝑞Φ𝑟 (𝒛𝑢 |𝒓𝑢 ) + (1 − 𝛼) · 𝑞Φ𝑘 (𝒛𝑢 |𝒌𝑢 ) with 𝛼 =


1

2
, if 𝒓𝑢 and 𝒌𝑢 are observed,

1, if only 𝒓𝑢 is observed,

0, if only 𝒌𝑢 is observed.

(6)

We set the weights uniformly to explicitly enforce an equal contribution from each 𝒓𝑢 and 𝒌𝑢 when both are observed

during training. In the case of an unobserved modality, we shift the importance distribution toward the presented one,

which generalizes to weakly supervised learning (see Section 3.2). This is an important factor, because the inference

network 𝑞Φ𝑘 (𝒛𝑢 |𝒌𝑢 ) will later induce the critique representation. Finally, one might be tempted to learn 𝛼 jointly with

the variational lower bound or dynamically. However, doing so might miscalibrate the precisions of the 𝑞Φ𝑟 (𝒛𝑢 |𝒓𝑢 ) or
𝑞Φ𝑘 (𝒛𝑢 |𝒌𝑢 ) and thus be detrimental to the whole model in terms of both prediction performance and generalization.

3.2 Training Strategy

Combining Equations 5 and 6 gives the full objective function, and M&Ms-VAE can be trained on a complete dataset

where all 𝒓𝑢 and 𝒌𝑢 are provided. However, in doing so, we never train the individual inference networks 𝑞Φ𝑟 (𝒛𝑢 |𝒓𝑢 )
and 𝑞Φ𝑘 (𝒛𝑢 |𝒌𝑢 ); only the relationship between the observed user interactions and keyphrase-usage preferences is

captured. As a consequence, at inference, it is unclear how the model performs with a missing observation.

To reach our goal of recommending given at least 𝒓𝑢 and embedding the critique effectively with the inference network

5
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Fig. 3. Workflow of considering the recommendation of items to a
user𝑢 over 𝑡+1 time steps. First, M&Ms-VAE produces the initial set
of recommended items �̂�0𝑢 = �̂�𝑢 using only the historical observed
interactions 𝒓𝑢 . Then, the user can provide a critique 𝒄𝑡𝑢 that is
encoded into 𝒛𝑡𝑢 via the inference model𝑞Φ𝑘 (𝒛𝑢 |𝒌𝑢 ) . The blending
module combines the previous representations 𝒛0𝑢 , 𝒛

1

𝑢 , . . . , 𝒛
𝑡
𝑢 into

�̃�𝑡𝑢 , from which the subsequent recommendation �̂�𝑡𝑢 is computed.
This process continues until the user𝑢 accepts the recommendation
and ceases to provide additional critiques.

Algorithm 1 Synthetic Critiquing Dataset Creation

1: function Generate(𝑹val,𝑲 𝑰
)

2: Synthetic dataset 𝐷 ← {}
3: for each user 𝑢 do
4: for each target item 𝑖 , where 𝒓val

𝑢,𝑖
= 1 do

5: Randomly sample a critique 𝒄 ∈ 𝐾\𝒌𝐼
𝑖

6: Compute the item sets 𝐼+𝒄 and 𝐼−𝒄

7: Update 𝐷 ← 𝐷 ∪ {(𝑢, 𝑖, 𝒄, 𝐼+𝒄 , 𝐼−𝒄 )}
8: return Synthetic dataset 𝐷

𝑞Φ𝑘 (𝒛𝑢 |𝒌𝑢 ), we propose a training strategy that mimics weakly supervised learning, similarly to [47]. Moreover, this

allows us to handle incomplete datasets, where some samples are partially observed: data that contain only 𝒓𝑢 or 𝒌𝑢 .2

The training strategy is shown in Figure 2. For each minibatch, we compute the gradient on the evidence lower bound

of the joint observation and each single observation 𝒓𝑢 and 𝒌𝑢 . Our final training objective for all users 𝑢 is

L(𝑹,𝑲 ) =
∑︁
𝑢∈𝑈

𝜆 · E𝑞Φ (𝒛𝑢 |𝒓𝑢 ,𝒌𝑢 )
[
log𝑝Θ𝑟 (𝒓𝑢 |𝒛𝑢 ) + log𝑝Θ𝑘 (𝒌𝑢 |𝒛𝑢 )

]
− 𝛽 DKL

[
𝑞Φ (𝒛𝑢 |𝒓𝑢 ,𝒌𝑢 ) | | 𝑝 (𝒛𝑢 )

]
𝐸𝐿𝐵𝑂 (𝒓𝑢 ,𝒌𝑢 )

+
∑︁
𝑢∈𝑈

𝜆 · E𝑞Φ𝑟 (𝒛𝑢 |𝒓𝑢 )
[
log𝑝Θ𝑟 (𝒓𝑢 |𝒛𝑢 )

]
− 𝛽 DKL

[
𝑞Φ𝑟 (𝒛𝑢 |𝒓𝑢 ) | | 𝑝 (𝒛𝑢 )

]
𝐸𝐿𝐵𝑂 (𝒓𝑢 )

+
∑︁
𝑢∈𝑈

𝜆 · E𝑞Φ𝑘 (𝒛𝑢 |𝒌𝑢 )
[
log𝑝Θ𝑘 (𝒌𝑢 |𝒛𝑢 )

]
− 𝛽 DKL

[
𝑞Φ𝑘 (𝒛𝑢 |𝒌𝑢 ) | | 𝑝 (𝒛𝑢 )

]
, 𝐸𝐿𝐵𝑂 (𝒌𝑢 ) (7)

where 𝜆 and 𝛽 control the strength of the reconstruction error and regularization, respectively.

3.3 Self-Supervised Critiquing with M&Ms-VAE

The purpose of critiquing is to refine the recommendation 𝒓𝑢 based on the user 𝑢’s interaction with the explanation �̂�𝑢 ,

represented with a binary vector. The user can accept the recommended items, at which point the session terminates. In

the other case, the user can provide a critique 𝒄𝑡𝑢 and obtain a new recommendation 𝒓𝑡𝑢 . The process is repeated over 𝑇

iterations until the user 𝑢 is satisfied with the recommendation. Each critique 𝒄𝑡𝑢 is encoded as a one-hot vector where

the positive value indicates a keyphrase the user 𝑢 dislikes. The overall process is depicted in Figure 3.

We leverage the generalization ability of the trained M&Ms-VAE, especially the inference models 𝑞Φ𝑟 (𝒛𝑢 |𝒓𝑢 ) and
𝑞Φ𝑘 (𝒛𝑢 |𝒌𝑢 ). We use the former to represent the initial user preferences 𝒓𝑢 and the latter to embed the critique 𝒄𝑡𝑢 . How-

ever, a crucial question remains: how should we blend the user representation 𝒛𝑢 with the 𝑡 th critique representation 𝒛𝑡𝑢?

Prior work has implemented a blending function as a simple average [26, 45] or as a linear programming task that

looks for a convex combination of embeddings provided with a specific linear optimization objective [22, 25]. As we

demonstrate empirically later, the former yields poor performance when iterated for multi-step critiquing, whereas the

latter is computationally slow because the optimization is performed for each critique and it cannot leverage GPUs.

2
It also enables another way to solve the cold-start problem: new users can select a set of items and/or relevant keyphrases that reflect their preferences.
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3.3.1 Blending Function Design. We propose to learn a blending function 𝜉 (·) built upon a trained M&Ms-VAE model

whose weights are frozen. This two-step approach has several advantages:

(1) The original training of M&Ms-VAE is not perturbed by the critiquing objective.

(2) 𝜉 (·) is decoupled from the model. It allows more flexibility in its architecture, objective function, and training.

We assume that each critique is independent, as in [2, 25, 45]. At time step 𝑡 , we express the new user preferences �̃�𝑡𝑢
with a linear interpolation between the original latent representation 𝒛0𝑢 and the critique 𝒄𝑡𝑢 ’s representation 𝒛𝑡𝑢 . More

precisely, we use the gating mechanism of the gated recurrent unit [10] (we omit the biases to reduce notational clutter):

�̃�𝑡𝑢 = 𝜉 (𝒛0𝑢 , 𝒛𝑡𝑢 ) = ℎ2

ℎ2 = (1 −𝑢1) · 𝑛1 +𝑢1 · ℎ1

𝑛1 = tanh(𝑊𝑖𝑛𝒛𝑡𝑢 +𝑊ℎ𝑛 (𝑟1 ⊙ ℎ1))

𝑢1 = 𝜎 (𝑊𝑖𝑢𝒛𝑡𝑢 +𝑊ℎ𝑧ℎ1)

𝑟1 = 𝜎 (𝑊𝑖𝑟 𝒛𝑡𝑢 +𝑊ℎ𝑟ℎ1)

ℎ1 = (1 −𝑢0) · 𝑛0 +𝑢0 · ℎ0

𝑛0 = tanh(𝑊𝑖𝑛𝒛0𝑢 +𝑊ℎ𝑛 (𝑟0 ⊙ ℎ0))

𝑢0 = 𝜎 (𝑊𝑖𝑢𝒛0𝑢 +𝑊ℎ𝑧ℎ0)

𝑟0 = 𝜎 (𝑊𝑖𝑟 𝒛0𝑢 +𝑊ℎ𝑟ℎ0)

, (8)

where𝑊𝑖𝑟 ,𝑊𝑖𝑢 ,𝑊𝑖𝑛,𝑊ℎ𝑟 ,𝑊ℎ𝑧 ,𝑊ℎ𝑛 , and the bias vectors are the model parameters.

3.3.2 Training. Thanks to our assumption and the generalization ability of M&Ms-VAE, we can learn the weights of

the blending module 𝜉 (·) by creating a synthetic dataset based only on the validation set (see Algorithm 1). For each

user and observed interaction, we randomly sample a keyphrase 𝒄 that is inconsistent with the target item. Then, we

calculate the item sets 𝐼+𝒄 that contain the critique and, symmetrically, the item sets 𝐼−𝒄 for those that do not contain it.
3

Our final objective is to re-rank items based on the user preferences and the provided critique 𝒄 . Recall that M&Ms-

VAE’s weights are frozen. Let 𝒓0𝑢 be the user 𝑢’s initial predictions 𝒓𝑢 and 𝒓1𝑢 those inferred from �̃�𝑡𝑢 after the critique.

We express this overall ranking-based objective via two differentiable max-margin objective functions:

L(�̂�0, �̂�1, 𝑢, 𝒄, 𝐼+𝒄 , 𝐼−𝒄 ) =
∑︁
𝑖+∈𝐼+𝒄

[
max

{
0, ℎ − (𝒓0

𝑢,𝑖+ − 𝒓
1

𝑢,𝑖+ )
}]
+

∑︁
𝑖−∈𝐼−𝒄

[
max

{
0, ℎ − (𝒓1𝑢,𝑖− − 𝒓

0

𝑢,𝑖− )
}]
, (9)

where ℎ is the margin. Intuitively, 𝜉 (·) is encouraged to create a representation �̃�𝑡𝑢 from which 𝑝Θ𝑟 (·) gives a lower
ranking to the items affected by the critique in the next iteration (i.e., 𝒓1

𝑢,𝑖+ < 𝒓0
𝑢,𝑖+ ) and a higher ranking to the unaffected

items (i.e., 𝒓1
𝑢,𝑖− > 𝒓0

𝑢,𝑖− ). Finally, Equation 9 is efficiently parallelizable on both CPUs and GPUs.

4 EXPERIMENTS

In this section, we proceed to evaluate the proposed M&Ms-VAE model in order to answer the following questions:

• RQ 1: How does M&Ms-VAE perform in terms of recommendation and explanation performance?

• RQ 2: Can M&Ms-VAE with the self-supervised critiquing objective enable multi-step critiquing?

• RQ 3: What is our proposed critiquing algorithm’s computational time complexity compared to prior work?

• RQ 4: How does M&Ms-VAE perform under weak supervision; how coherent is the joint and cross generation?

4.1 Datasets

We evaluate the quantitative performance of M&Ms-VAE using four real-world, publicly available datasets: BeerAdvo-

cate [27], Amazon CDs&Vinyl [14, 28], Yelp [12], and HotelRec [1]. Each contains more than 100k reviews with five-star

ratings. For the purpose of Top-N recommendation, we binarize the ratings with a threshold 𝑡 > 3.5. Because people

tend to rate beers and restaurants positively, we set the threshold 𝑡 > 4 and 𝑡 > 4.5, respectively. We split each dataset

3
In early experiments, we generalized 𝜉 (𝒛0𝑢 , 𝒛𝑡𝑢 ) to 𝜉 (𝒛0𝑢 , 𝒛1𝑢 , . . . , 𝒛𝑡𝑢 ) and updated Algorithm 1 accordingly. However, our synthetic dataset cannot

cover such a space due to the exponential number of combinations; session-based recommenders require millions of real sessions as training data [16, 17].
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Table 1. Descriptive statistics of the datasets. Coverage shows the ratio of reviews having at least one of the selected keyphrases (KPs)

Dataset #Users #Items #Interactions Sparsity #KPs KP Coverage Avg. KPs/Review AVG. KPs/User

Beer 6,370 3,669 263,244 1.13% 75 99.27% 7.16 1,216

CDs&Vinyl 6,060 4,395 152,783 0.57% 40 74.59% 2.13 73

Yelp 9,801 4,706 140,496 0.30% 234 96.65% 7.45 300

Hotel 7,044 4,874 143,612 0.42% 141 99.99% 17.42 419

into 60%/20%/20% for the training, validation, and test sets. Table 1 shows the statistics of the datasets. All contain

complete observations. The datasets do not contain preselected keyphrases. Hence, we extract the keyphrases for the

explanations and critiquing with the frequency-based processing of [22, 45]. Some examples are shown in the appendix.

4.2 Experimental Settings

Across experiments, we treat the prior and the likelihood as standard normal and multinomial distributions, respectively.

The inference and generative networks consist of a two-layer neural network with a tanh nonlinearity as the activation

function between the layers. We normalize the input and use dropout [38]. For learning, we employ the Adam

optimizer [19] with AMSGrad [30] and a learning rate of 5 · 10−5. We anneal linearly the regularization parameter

𝛽 of the Kullback-Leibler terms. For the baselines, we reused the authors’ code and tuning procedure. We select

hyperparameters and architectures for each model by evaluating NDCG on the validation set. We limit the search to a

maximum of 100 trials. For critiquing, we tune our blending module on the synthetic dataset with the Falling MAP

metric on the validation set, which measures the effect of a critique [45]. For reproducibility purposes, we include

additional details and the best hyperparameters in the supplementary material.

4.3 RQ 1: How does M&Ms-VAE perform in terms of recommendation and explanation performance?

4.3.1 Baselines. We compare our proposed M&Ms-VAE model to the following baseline models. POP returns the most

popular items without any kind of personalization. AutoRec [36] is a neural autoencoder-based recommendation

system. BPR [32] is a Bayesian personalized ranking model that explicitly optimizes pairwise rankings. CDAE [48]

denotes a collaborative denoising autoencoder that is specifically optimized for implicit feedback recommendation tasks.

NCE-PLRec [46] represents the linear recommendation projected by noise-contrastive estimation; it augments PLRec

with noise-contrasted item embeddings. PLRec [35] is the ablation variant of NCE-PLRec without the noise-contrastive

estimation. PureSVD [11] denotes a similarity-based recommendation method that constructs a similarity matrix

through SVD decomposition of the implicit rating matrix. VAE-CF is the variational autoencoder for collaborative

filtering described in Section 2.2. CE-VNCF [45] is the extension of the neural collaborative filtering model [15] that is

augmented with an explanation and a critiquing neural component. Finally, CE-VAE [26] is a significant improvement

over CE-VNCF, and it produces state-of-the-art performance (more details in Section 2.3). For a fair comparison, we

encode the user observations in M&Ms-VAE using solely the inference network 𝑞Φ𝑟 (𝒛𝑢 |𝒓𝑢 ) at test time.

4.3.2 Top-N Recommendation Performance. We report the following five metrics: R-Precision and NDCG; MAP, Preci-

sion, and Recall at different Top-N. The main results are presented in Table 2. We make the following key observations.

Overall, our proposed M&Ms-VAE model shows the best recommendation performance for all metrics on three datasets

and nearly all metrics on the CDs&Vinyl dataset. Compared to the original VAE recommender (VAE-CF), M&Ms-VAE

achieves an improvement of 13% on average. We conjecture that the additional loss terms (i.e., 𝐸𝐿𝐵𝑂 (𝒓𝑢 , 𝒌𝑢 ) and
8
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Table 2. Top-N recommendation results of all datasets. Bold and underline denote the best and second-best results, respectively. We
omit the error bars because the 95% confidence interval is in 4th digit.

MAP@N Precision@N Recall@N

Model R-Precision NDCG 𝑁 = 5 𝑁 = 10 𝑁 = 20 𝑁 = 5 𝑁 = 10 𝑁 = 20 𝑁 = 5 𝑁 = 10 𝑁 = 20

Be
er

POP 0.0307 0.0777 0.0388 0.0350 0.0319 0.0346 0.0298 0.0279 0.0241 0.0408 0.0737

AutoRec 0.0496 0.1140 0.0652 0.0591 0.0527 0.0574 0.0503 0.0438 0.0392 0.0663 0.1129

BPR 0.0520 0.1214 0.0646 0.0597 0.0538 0.0596 0.0525 0.0449 0.0451 0.0744 0.1214

CDAE 0.0414 0.0982 0.0504 0.0477 0.0434 0.0482 0.0432 0.0368 0.0330 0.0576 0.0969

NCE-PLRec 0.0501 0.1151 0.0643 0.0594 0.0532 0.0589 0.0518 0.0440 0.0418 0.0714 0.1177

PLRec 0.0497 0.1113 0.0655 0.0599 0.0532 0.0590 0.0515 0.0431 0.0421 0.0704 0.1127

PureSVD 0.0450 0.1052 0.0479 0.0473 0.0446 0.0493 0.0455 0.0396 0.0391 0.0689 0.1131

VAE-CF 0.0538 0.1275 0.0642 0.0594 0.0536 0.0595 0.0525 0.0448 0.0473 0.0808 0.1327

CE-VAE 0.0520 0.1215 0.0675 0.0618 0.0555 0.0620 0.0536 0.0461 0.0442 0.0737 0.1255

CE-VNCF 0.0440 0.1099 0.0546 0.0512 0.0472 0.0504 0.0465 0.0411 0.0353 0.0635 0.1116

M&Ms-VAE (Ours) 0.0545 0.1307 0.0706 0.0650 0.0580 0.0649 0.0563 0.0473 0.0492 0.0833 0.1349

C
D
s&

Vi
ny

l

POP 0.0088 0.0265 0.0108 0.0102 0.0095 0.0098 0.0095 0.0082 0.0088 0.0182 0.0327

AutoRec 0.0227 0.0537 0.0284 0.0257 0.0220 0.0255 0.0213 0.0165 0.0254 0.0418 0.0627

BPR 0.0632 0.1516 0.0724 0.0639 0.0543 0.0640 0.0513 0.0408 0.0807 0.1263 0.1939

CDAE 0.0135 0.0365 0.0173 0.0158 0.0141 0.0152 0.0136 0.0116 0.0143 0.0262 0.0451

NCE-PLRec 0.0749 0.1739 0.0728 0.0678 0.0586 0.0698 0.0584 0.0441 0.1010 0.1608 0.2308

PLRec 0.0760 0.1626 0.0889 0.0777 0.0642 0.0773 0.0608 0.0444 0.0960 0.1461 0.2025

PureSVD 0.0652 0.1551 0.0570 0.0565 0.0509 0.0612 0.0527 0.0405 0.0914 0.1486 0.2149

VAE-CF 0.0638 0.1699 0.0540 0.0554 0.0517 0.0600 0.0540 0.0440 0.0949 0.1593 0.2381
CE-VAE 0.0708 0.1532 0.0816 0.0711 0.0588 0.0715 0.0555 0.0411 0.0903 0.1357 0.1937

CE-VNCF 0.0654 0.1524 0.0746 0.0662 0.0560 0.0663 0.0534 0.0411 0.0829 0.1299 0.1931

M&Ms-VAE (Ours) 0.0801 0.1765 0.0885 0.0784 0.0660 0.0779 0.0628 0.0482 0.0983 0.1529 0.2263

Ye
lp

POP 0.0026 0.0129 0.0024 0.0026 0.0026 0.0028 0.0028 0.0025 0.0042 0.0087 0.0151

AutoRec 0.0034 0.0133 0.0032 0.0030 0.0028 0.0027 0.0027 0.0025 0.0038 0.0081 0.0153

BPR 0.0160 0.0609 0.0168 0.0156 0.0143 0.0156 0.0140 0.0122 0.0236 0.0435 0.0748

CDAE 0.0028 0.0135 0.0027 0.0028 0.0027 0.0030 0.0027 0.0026 0.0044 0.0084 0.0161

NCE-PLRec 0.0197 0.0739 0.0220 0.0200 0.0177 0.0198 0.0169 0.0143 0.0300 0.0505 0.0864

PLRec 0.0191 0.0703 0.0207 0.0189 0.0171 0.0185 0.0166 0.0143 0.0291 0.0513 0.0866

PureSVD 0.0253 0.0825 0.0279 0.0249 0.0217 0.0240 0.0206 0.0173 0.0357 0.0597 0.1008

VAE-CF 0.0214 0.0801 0.0232 0.0216 0.0195 0.0214 0.0192 0.0163 0.0319 0.0589 0.0995

CE-VAE 0.0136 0.0533 0.0143 0.0132 0.0121 0.0125 0.0119 0.0104 0.0197 0.0367 0.0636

CE-VNCF 0.0166 0.0693 0.0175 0.0167 0.0157 0.0165 0.0154 0.0144 0.0251 0.0467 0.0889

M&Ms-VAE (Ours) 0.0264 0.0909 0.0284 0.0261 0.0231 0.0260 0.0223 0.0188 0.0395 0.0682 0.1154

H
ot
el

POP 0.0047 0.0188 0.0049 0.0047 0.0042 0.0047 0.0043 0.0036 0.0054 0.0098 0.0167

AutoRec 0.0051 0.0193 0.0053 0.0050 0.0044 0.0052 0.0042 0.0037 0.0061 0.0097 0.0169

BPR 0.0181 0.0623 0.0198 0.0185 0.0169 0.0183 0.0168 0.0146 0.0219 0.0409 0.0713

CDAE 0.0050 0.0190 0.0054 0.0049 0.0044 0.0050 0.0043 0.0037 0.0057 0.0098 0.0172

NCE-PLRec 0.0229 0.0684 0.0244 0.0226 0.0200 0.0228 0.0195 0.0160 0.0283 0.0484 0.0785

PLRec 0.0242 0.0664 0.0265 0.0234 0.0201 0.0228 0.0190 0.0155 0.0284 0.0466 0.0758

PureSVD 0.0179 0.0541 0.0193 0.0173 0.0152 0.0169 0.0145 0.0121 0.0206 0.0357 0.0594

VAE-CF 0.0243 0.0755 0.0267 0.0241 0.0213 0.0238 0.0206 0.0171 0.0295 0.0511 0.0848

CE-VAE 0.0147 0.0538 0.0151 0.0146 0.0136 0.0148 0.0137 0.0122 0.0184 0.0334 0.0595

CE-VNCF 0.0165 0.0575 0.0180 0.0166 0.0152 0.0159 0.0149 0.0129 0.0200 0.0370 0.0635

M&Ms-VAE (Ours) 0.0272 0.0804 0.0290 0.0265 0.0235 0.0260 0.0227 0.0189 0.0314 0.0555 0.0928

𝐸𝐿𝐵𝑂 (𝒌𝑢 )) help to generate better user representations by leveraging both the user preferences and keyphrase usage

with the mixture of experts.
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Table 3. Top-K keyphrase explanation quality of all datasets. Bold and underline denote the best and second-best results, respectively.
We omit the error bars because the 95% confidence interval is in 4th digit.

NDCG@K MAP@K Precision@K Recall@K

Model 𝐾 = 5 𝐾 = 10 𝐾 = 20 𝐾 = 5 𝐾 = 10 𝐾 = 20 𝐾 = 5 𝐾 = 10 𝐾 = 20 𝐾 = 5 𝐾 = 10 𝐾 = 20

Be
er

UserPop 0.0550 0.0852 0.1484 0.0812 0.0795 0.0824 0.0782 0.0799 0.0933 0.0446 0.0913 0.2186

ItemPop 0.0511 0.0807 0.1428 0.0767 0.0749 0.0777 0.0697 0.0740 0.0895 0.0402 0.0856 0.2107

CE-VAE 0.2803 0.4104 0.5916 0.9418 0.9168 0.8820 0.9186 0.8760 0.8186 0.1448 0.2683 0.4829

CE-VNCF 0.2390 0.3221 0.4080 0.3414 0.3117 0.2690 0.3145 0.2633 0.2026 0.1966 0.3263 0.4962
M&Ms-VAE (Ours) 0.2817 0.4147 0.5960 0.9463 0.9237 0.8885 0.9243 0.8861 0.8256 0.1457 0.2722 0.4869

C
D
s&

Vi
ny

l UserPop 0.1028 0.1285 0.1869 0.0910 0.0807 0.0700 0.0860 0.0636 0.0595 0.1157 0.1704 0.3392

ItemPop 0.1109 0.1357 0.1935 0.0928 0.0833 0.0716 0.0929 0.0657 0.0606 0.1288 0.1825 0.3499

CE-VAE 0.5243 0.6468 0.7454 0.6441 0.5609 0.4575 0.5564 0.4324 0.3040 0.4795 0.6808 0.8757

CE-VNCF 0.4590 0.5338 0.5860 0.3657 0.2981 0.2258 0.2893 0.2010 0.1260 0.5081 0.6698 0.8127

M&Ms-VAE (Ours) 0.5447 0.6659 0.7628 0.6648 0.5779 0.4700 0.5777 0.4441 0.3091 0.5015 0.6996 0.8894

Ye
lp

UserPop 0.0007 0.0009 0.0066 0.0009 0.0010 0.0016 0.0013 0.0009 0.0061 0.0007 0.0011 0.0129

ItemPop 0.0008 0.0011 0.0073 0.0009 0.0011 0.0018 0.0015 0.0011 0.0065 0.0009 0.0013 0.0149

CE-VAE 0.1935 0.2763 0.3803 0.6653 0.6356 0.5916 0.6363 0.5876 0.5181 0.1017 0.1819 0.3080

CE-VNCF 0.0883 0.1164 0.1505 0.1195 0.1052 0.0901 0.1023 0.0848 0.0690 0.0779 0.1270 0.2027

M&Ms-VAE (Ours) 0.1949 0.2787 0.3837 0.6738 0.6428 0.5976 0.6434 0.5935 0.5229 0.1019 0.1834 0.3107

H
ot
el

UserPop 0.0436 0.0681 0.1059 0.1091 0.1059 0.1054 0.1018 0.1036 0.1050 0.0265 0.0557 0.1120

ItemPop 0.0483 0.0756 0.1152 0.1159 0.1137 0.1124 0.1108 0.1131 0.1111 0.0303 0.0633 0.1237

CE-VAE 0.2425 0.3521 0.4984 0.9389 0.9113 0.8638 0.9209 0.8629 0.7831 0.1153 0.2105 0.3704

CE-VNCF 0.1873 0.2527 0.3280 0.3975 0.3671 0.3230 0.3732 0.3154 0.2558 0.1252 0.2060 0.3230

M&Ms-VAE (Ours) 0.2500 0.3595 0.5054 0.9752 0.9393 0.8829 0.9498 0.8776 0.7895 0.1182 0.2131 0.3726

M&Ms-VAE also significantly outperforms CE-VAE on the Yelp and Hotel datasets (by a factor of 1.9 and 1.7,

respectively) and achieves an average improvement of 9% on the Beer and CDs&Vinyl datasets. We remark the same

trend with CE-VNCF. These results emphasize the noise introduced in CE-VAE and CE-VNCF during training when

learning the mapping between the keyphrases and the latent space. This is even more pronounced with a large number

of keyphrases (i.e., over 100). In contrast, M&Ms-VAE is more robust thanks to our factorization and training strategy.

Interestingly, PureSVD exhibits the second-best performance on the CDs&Vinyl and Yelp datasets. This shows that

classic algorithms often remain competitive with state-of-the-art VAE-based recommender systems.

4.3.3 Top-K Explanation Performance. We also compare M&Ms-VAE with the user and item-popularity baselines [45]

that predict the explanation through counting and ranking the frequency of keyphrases for the users (symmetrically,

the items) in the training set. Among the recommender baselines, only CE-VAE and CE-VNCF produce an explanation

alongside the recommendation. We report the following metrics: NDCG, MAP, Precision, and Recall at different Top-K.

Table 3 contains the main results. Both popularity baselines clearly underperform, showing that the task is not

trivial (see Table 1 for the number of keyphrases per dataset). Remarkably, the proposed M&Ms-VAE model signif-

icantly outperforms the CE-VNCF baseline by a factor of 2.5 on average and by approximately by 3.5 on MAP and

Precision. Moreover, M&Ms-VAE retrieves 89% percent of relevant keyphrases within the Top-20 explanations on the

CDs&Vinyl dataset.

We observe that CE-VAE performs similarly to M&Ms-VAE but still slightly underperforms by approximately 2% on

average. Finally, we note that CE-VNCF achieves the best results in terms of Recall for the Beer dataset and Recall@5 for

the CDs&Vinyl and Hotel datasets. Nevertheless, as seen in the recommendation performance, CE-VNCF significantly

underperforms, highlighting the trade-off between recommendation and explanation.
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4.4 RQ 2: Can M&Ms-VAE with the self-supervised critiquing objective enable multi-step critiquing?

4.4.1 Baselines. UAC [25] denotes uniform average critiquing, in which the user embedding and all critique embeddings

are averaged uniformly. BAC [25] is balanced average critiquing. It first averages the critique embeddings and then

averages them again with the initial user embedding. CE-VAE and CE-VNCF were introduced in Section 4.3.1. During

training, both learn an inverse feedback loop between a critique and the latent space. At inference, they average the

original user embedding with the critique embedding. LLC-Score [25] and LLC-Rank [22] first extend the PLRec

recommender system [35] to co-embed keyphrases into the user embedding space with a linear regression. Afterwards,

the models apply a weighted average between the initial user embedding and each critique embedding; the weights are

optimized in a linear programming formulation; LLC-Score uses a max-margin scoring-based objective and LLC-Rank a

ranking-based objective. To limit computational complexity, the authors limit the number of constraints to the top-100

rated items. For a fair comparison, we also consider in M&Ms-VAE the top-100 rated items meeting the criteria for 𝐼+𝒄

and 𝐼−𝒄 for each critique 𝒄 , although the computational time remains identical using the full sets.

4.4.2 User Simulation. Similarly to prior work [22, 25], we conduct a user simulation to asses each model’s performance

in a multi-step conversational recommendation scenario. Concretely, the simulation considers all users and follows

Algorithm 1 with the following differences: (1) we track the conversational interaction session of simulated users by

selecting all target items from their test set, (2) the maximum allowed critiquing iterations is set to 10, and, (3) the

conversation stops if the target item appears within the top-N recommendations on that iteration.

As in [22], we simulate a variety of user-critiquing styles. For each, the candidate keyphrases to critique are inconsis-

tent (i.e., disjoint) with the target item’s known keyphrase list. We experiment with the following three methodologies:

(1) Random: we assume the user randomly chooses a keyphrase to critique.

(2) Pop: we assume the user selects a keyphrase to critique according to the general keyphrase popularity.

(3) Diff: we assume the user critiques a keyphrase that deviates the most from the known target item description.

To do so, we compare the top recommended items’ keyphrase frequency to the target item’s keyphrases and

select the keyphrase with the largest frequency differential.

4.4.3 Multi-Step Critiquing Performance. Following [22, 25], we asses the models over all users and all items on the

test set using two metrics: the average success rate and session length. The former is the percentage of target items that

successfully reach a rank within the Top-N, and the latter is the average length of these sessions (with a limit of 10

iterations). In our experiment framework, for each user and target item, we sample alongside 299 unseen items.

The results for each dataset and each keyphrase critiquing selection method are depicted in Figure 4. Overall, all

models’ performance is generally better on the Beer and CDs&Vinyl datasets due to the higher density in terms of the

number of interactions. Generally, all models tend to find the target item within the Top-20 in more than half the time

and under six turns. This highlights that in practice, users are likely to find the desired item in a limited amount of time.

Impressively, M&Ms-VAE clearly outperforms all the baselines on both metrics on the Beer, CDs&Vinyl, and Yelp

datasets. On the Hotel dataset, the success rate is significantly higher for the Random and Pop cases and similar for the

Diff case, whereas the session length is higher for the Pop and Diff selection methods. This is unsurprising, because the

blending module is trained only once on the random keyphrase critiquing selection (i.e., no assumption on the user’s

behavior).

Although the simple self-supervision objective in M&Ms-VAE mimics only one-step random critiquing, we remark
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Fig. 4. Multi-step critiquing performance after 10 turns of conversation. For each dataset and keyphrase critiquing selection method,
we report the average success rate (left y-axis) and session length (right y-axis) at different Top-N with 95% confidence interval.

that the training strategy generalizes for multi-step critiquing and other keyphrase critiquing selection as well. This

shows that M&Ms-VAE efficiently embeds the critique, thanks to the multimodal modeling.

We observe that the simple UAC and BAC methods perform similarly or better than CE-VNCF and CE-VAE. However,

they are outperformed by LLC-Score, LLC-Rank, and M&Ms-VAE. These results confirm our observation in Section 2.3

that the critiquing objective introduces noise during training and does not accurately reflect the critiquing mechanism.

Finally, we note that LLC-Score performs similarly to LLC-Rank in most cases. When compared to M&Ms-VAE, both
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Fig. 5. Average time consumed for completing 10 runs for 1,000-user simulation after ten turns of conversation with 95% confidence
intervals. LLC-Score and LLC-Rank cannot leverage GPUs; we thus report the performance of M&Ms-VAE on CPU and GPU.
Additionally, we report the inference speedup compared to the slowest model.

significantly underperform on both metrics in 10 out of 12 cases. This highlights the effectiveness of our proposed

critiquing algorithm compared to linear aggregation methods.

4.5 RQ 3: What is the critiquing computational time complexity for M&Ms-VAE compared to prior work?

Now, we aim to empirically determine how the critiquing in M&Ms-VAE compares to the best baselines in Section 4.4,

LLC-Score and LLC-Rank, in terms of computational time. Because the baselines can not leverage the GPU due to their

optimization framework, we also run M&Ms-VAE on the CPU. We follow the same experiment settings as in Section 4.4

and limit ourselves to 1,000 users and the Random keyphrase critiquing selection method. All models process exactly 10

critiques for each user-item pair. We employ a machine with a 2.5GHz 24-core CPU, Titan X GPU, and 256GB memory.

Figure 5 shows the average computational time over 10 runs. Particularly, the Figure 5a denotes the critiquing

computational time in milliseconds, and Figure 5b the overall simulation time in minutes. Impressively, we observe that

the critiquing in M&Ms-VAE’s is approximately 7.5x faster on CPU and up to 25.6x on the GPU than LLC-Score and

LLC-Rank. This shows that once the critiquing module of M&Ms-VAE is trained, which takes less than five minutes on

the machine, the model achieves a lower latency (batch size of one). In Figure 5b, the overall simulation in M&Ms-VAE

is at least 3.1x faster on CPU and approximately 5.3x faster on GPU. Finally, in real-life applications, we could leverage

multiple users’ critiques simultaneously and increase the throughput by considering a larger batch size.

4.6 RQ4: How does M&Ms-VAE perform under weak supervision; is the joint & cross inference coherent?

We first quantify the coherence of joint and cross generations of our M&Ms-VAE model. We denote three cases at test

time: (1) only the user’s interactions are used, and the encoder is 𝑞Φ𝑟 (𝒛𝑢 |𝒓𝑢 ); (2) only the user’s keyphrase preference is

used, and the encoder is 𝑞Φ𝑘 (𝒛𝑢 |𝒌𝑢 ); and (3) both used with the encoder 𝑞Φ (𝒛𝑢 |𝒓𝑢 , 𝒌𝑢 ). Second, we simulate incomplete

supervision by randomly selecting a subset of the training with fully observed samples. The other one is split into two

even parts: the first includes only observed 𝒓𝑢 and the second 𝒌𝑢 . We retain the models and settings of Section 4.3.

Figure 6 shows the results averaged on five runs for the three cases at different levels of supervision. The top row

presents the explanation and recommendation performance in terms of NDCG and Recall@20 (the model behavior
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Fig. 6. Recommendation (left y-axis) and explanation (right y-axis) results averaged on 5 runs with different combinations of mod-
alities observed at inference. The x-axis denotes the percentage of fully observed inputs during training; the rest is partially observed.

is consistent across the other metrics). On the full datasets, we note that the explanation performance is comparable

across the three variants and higher than those of the baselines in Table 3. Regarding the recommendation performance,

M&Ms-VAEr𝑢 obtains the best results, followed closely by M&Ms-VAEr𝑢 , k𝑢 , and M&Ms-VAEk𝑢 clearly underperforms.

This aligns with the observations in [7, 34]: recommender systems are limited if they use only review text as input, and

not all reviews can be useful. Nevertheless, compared to Table 2, M&Ms-VAEk𝑢 always achieves better recommendation

performance than the popularity baseline, and it performs better than AutoRec and CDAE on two datasets.

The bottom row of Figure 6 show the relative drop in performance on both metrics. The explanation performance

seems unaffected by the sparsity, showing that the explanation task remains simple in comparison with the recom-

mendation task. Remarkably, with only 50% fully observed inputs and the rest partially observed, the recommendation

performance of M&Ms-VAEr𝑢 and M&Ms-VAEr𝑢 , k𝑢 is decreased by only 9% on average. More so, with 90% partial

observations, the model can still achieve more than 70% of its performance quality on the full datasets. Finally, these

results emphasize that M&Ms-VAE can effectively learn the joint distribution even in a weakly supervised setting.

5 CONCLUSION

Recommendations can have much more impact if they are supported by explanations that can be critiqued. Previous

research has developed methods that either perform poorly in multi-step critiquing or suffer from computational

inefficiency at inference. In this paper, we presented M&Ms-VAE, a novel variational autoencoder for recommenda-

tion and explanation that treats the user preference and keyphrase usage as different observed variables. Additionally, we

proposed a strategy that mimics weakly supervised learning and trains the inference networks jointly and independently.

Our second contribution is a new critiquing module that leverages the generalizability of M&Ms-VAE to embed the

user preference and the critique. With a self-supervised objective and a synthetic dataset, we enable multi-step critiquing

in M&Ms-VAE. Experiments on four datasets show that M&Ms-VAE (1) is the first model to obtain substantially better

recommendation, explanation, and multi-critiquing performance, (2) processes critiques up to 25.6x faster than previous

state-of-the-art methods, and (3) produces coherent joint and cross generation, even under weak supervision.
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A M&MS-VAE DERIVATION
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B KEYPHRASE EXAMPLES

Table 4. Some keyphrases mined from the reviews. We manually grouped them by types for a better understanding.

Dataset Type Keyphrases

Beer

Head white, tan, offwhite, brown

Malt roasted, caramel, pale, wheat, rye

Color golden, copper, orange, black, yellow

Taste citrus, fruit, chocolate, cherry, plum

CDs&Vinyl

Genre rock, pop, jazz, rap, hip hop, R&B

Instrument orchestra, drum

Style concert, opera

Religious chorus, christian, gospel

Yelp

Cuisine chinese, thai, italian, mexican, french

Drink tea, coffee, bubble tea, wine, soft drinks

Food chicken, beef, fish, pork, seafood, cheese

Price & Service cheap, pricy, expensive, busy, friendly

Hotel

Service bar, lobby, housekeeping, guest, shuttle

Cleanliness toilet, sink, tub, smoking, toiletry, bathroom

Location airport, downtown, city, shop, restaurant

Room bed, tv, balcony, terrace, kitchen, business

C ADDITIONAL TRAINING DETAILS

The official baselines’ codes from the respective authors, including the tuning procedure, are available in
4567

. The final

hyperparameters for all models and datasets are shown in Table 5. For all experiments, we used the following hardware:

• CPU: 2x Intel Xeon E5-2680 v3 (Haswell), 2x 12 cores, 24 threads, 2.5 GHz, 30 MB cache; • RAM: 16x16GB DDR4-2133;

• GPU: 1x Nvidia Titan X Maxwell; • OS: Ubuntu 18.04; • Software: Python 3.6, PyTorch 1.6.1, CUDA 10.2.

4
https://github.com/wuga214/NCE_Projected_LRec

5
https://github.com/k9luo/DeepCritiquingForVAEBasedRecSys

6
https://github.com/wuga214/DeepCritiquingForRecSys

7
https://github.com/litosly/RankingOptimizationApproachtoLLC
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Table 5. Best hyperparameter setting for each model. The top table refers to Section 4.3 and the bottom one to Section 4.4.

Dataset Model 𝐻 𝐿𝑅 𝜆𝐿2 𝜆 𝜆𝐾𝑃 𝜆𝐶 𝛽 Iteration Epoch Dropout 𝛾 Neg. Samples

Be
er

AutoRec 200 0.0001 0.00001 1.0 - - - - 300 - - -

BPR 200 - 0.0001 1.0 - - - - 30 - - 1

CDAE 200 0.0001 0.00001 1.0 - - - - 300 0.2 - -

NCE-PLRec 50 - 10000.0 1.0 - - - 10 - - 1.1 -

PLRec 400 - 10000.0 1.0 - - - 10 - - - -

PureSVD 50 - - - - - - 10 - - - -

VAE-CF 50 0.0001 0.0001 1.0 - - 0.2 - - 0.4 - -

CE-VAE 100 0.0001 0.0001 1.0 0.01 0.01 0.001 - 300 0.5 - -

CE-VNCF 100 0.0005 0.00005 1.0 1.0 1.0 0.1 - 100 0.1 - 5

M&Ms-VAE 300 0.00005 1e-10 3.0 - - 0.7 - 300 0.4 - -

C
D
s&

Vi
ny

l

AutoRec 200 0.0001 0.00001 1.0 - - - - 300 - - -

BPR 200 - 0.0001 1.0 - - - - 30 - - 1

CDAE 200 0.0001 0.00001 1.0 - - - - 300 0.2 - -

NCE-PLRec 200 - 1000.0 1.0 - - - 10 - - 1.3 -

PLRec 400 - 1000.0 1.0 - - - 10 - - - -

PureSVD 200 - - - - - 10 - - - -

VAE-CF 200 0.0001 0.00001 1.0 - - 0.2 - - 0.3 - -

CE-VAE 200 0.0001 0.0001 1.0 0.001 0.001 0.0001 - 600 0.5 - -

CE-VNCF 100 0.0001 0.0001 1.0 1.0 1.0 0.1 - 100 0.1 - 5

M&Ms-VAE 400 0.00005 1e-12 1.0 - - 0.4 - 400 0.4 - -

Ye
lp

AutoRec 50 0.0001 0.001 1.0 - - - - 300 - - -

BPR 100 - 0.0001 1.0 - - - - 30 - - 1

CDAE 50 0.0001 0.001 1.0 - - - - 300 0.4 - -

NCE-PLRec 50 - 10000.0 1.0 - - - 10 - - 1.3 -

PLRec 400 - 10000.0 1.0 - - - 10 - - - -

PureSVD 50 - - - - - - 10 - - - -

VAE-CF 50 0.0001 0.001 1.0 - - 0.2 - - 0.2 - -

CE-VAE 200 0.0001 0.0001 1.0 0.01 0.01 0.001 - 600 0.4 - -

CE-VNCF 100 0.0005 0.0001 1.0 1.0 1.0 0.1 - 100 0.1 - 5

M&Ms-VAE 500 0.00005 1e-10 10.0 - - 0.8 - 300 0.7 - -

H
ot
el

AutoRec 50 0.0001 1e-05 1.0 - - - - 300 - - -

BPR 200 - 0.0001 1.0 - - - - 30 - - 1

CDAE 200 0.0001 0.001 1.0 - - - - 300 0.2 - -

NCE-PLRec 50 - 10000.0 1.0 - - - 10 - - 1.3 -

PLRec 400 - 10000.0 1.0 - - - 10 - - - -

PureSVD 50 - - - - - - 10 - - - -

VAE-CF 50 0.0001 1e-05 1.0 - - 0.2 - - 0.5 - -

CE-VAE 200 0.0001 0.0001 1.0 0.01 0.01 0.001 - 600 0.2 - -

CE-VNCF 100 0.0005 0.0001 1.0 1.0 1.0 0.1 - 100 0.1 - 5

M&Ms-VAE 400 0.00005 1e-12 2.0 - - 0.8 - 300 - - -

Dataset Model ℎ 𝐿𝑅 𝜆𝐿2

Beer

M&Ms-VAE 𝜉 ( ·)
(Critiquing)

0.75 0.001 0

CDsVinyl 3.0 0.001 1e-10

Yelp 2.0 0.001 0

Hotel 5.0 0.001 1e-10
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D MULTI-STEP CRITIQUING ON THEWHOLE SET OF ITEMS

Here we replicate the experiment in Section 4.4, but we use instead all the available items (see Table 1 for the sizes). When

the evaluation is conducted on 300 items (see Figure 4), we see that users indeed find a specific item using our technique

with a high success rate (i.e., around 90%). However, in Figure 7 where thousands of items are available, the results

show that current methods are not yet good enough to achieve similar results for such a large number. Nevertheless,

M&Ms-VAE clearly outperforms on average other methods and still achieves an average success rate of 30%.
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(b) CDsVinyl dataset.
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(c) Yelp dataset.
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Fig. 7. Multi-step critiquing performance after 10 turns of conversation on all items. For each dataset and keyphrase critiquing
selection method, we report the average success rate (left y-axis) and session length (right y-axis) at different Top-N with 95%
confidence interval.
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