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Abstract
Recommender systems research tends to evaluate model performance offline and on randomly sampled
targets, yet the same systems are later used to predict user behavior sequentially from a fixed point in
time. Simulating online recommender system performance is notoriously difficult and the discrepancy
between online and offline behaviors is typically not accounted for in offline evaluations. This disparity
permits weaknesses to go unnoticed until the model is deployed in a production setting. In this paper, we
first demonstrate how omitting temporal context when evaluating recommender system performance
leads to false confidence. To overcome this, we postulate that offline evaluation protocols can only
model real-life use-cases if they account for temporal context. Next, we propose a training procedure to
further embed the temporal context in existing models. We use a multi-objective approach to introduce
temporal context into traditionally time-unaware recommender systems and confirm its advantage via
the proposed evaluation protocol. Finally, we validate that the Pareto Fronts obtained with the added
objective dominate those produced by state-of-the-art models that are only optimized for accuracy on
three real-world publicly available datasets. The results show that including our temporal objective can
improve recall@20 by up to 20%
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1. Introduction

In an increasingly digital world, recommender systems are a staple of our daily routines. They
influence how we perceive our environment, from media content to human relationships.
Traditional methods of evaluation that entail random sampling over a long period of time are
perfect for a system that is designed to remain unchanged for an equally long and predefined
period. However, if the system is to be used in a dynamic setting, e.g. recommending the
next song to play in a playlist, the way it is evaluated must reflect that. Inadequate evaluation
techniques can lead to false confidence, which is especially detrimental in commercial settings.
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Recommender system evaluation can be done online or offline. Online evaluation implies
deployment of the recommender in the real world, often in a commercial setting. While this
may be ideal for measuring the real-life impact of a system, it is also costly, both in terms
of resources and time, and therefore rarely used in research and benchmarking. In offline
evaluation, historical data is utilized. Some portion of the data is selected to train on, while
another subset is used for performance testing. Since all data points are available beforehand,
the evaluation costs and overall timeline are significantly reduced.

Irrespective of whether they are evaluated online or offline, many existing recommenders
ignore temporal information. Most recommender systems fall into one of two main categories:
content-based or collaborative filtering [1, 2, 3, 4]. The former relies on recommended items
having similar attributes to those that the user has previously interacted with, while the
latter methods base their recommendation on items bought by similar users. However, many
models completely ignore temporal information, with the notable exception of time-aware
recommender systems[5]. These systems introduce additional context to interactions: their
temporal dimension.

In this work, we first focus on the importance of temporal dynamics in recommender system
evaluation. We draw attention to the lack of standardization in the evaluations, and the differ-
ences between research settings and the systems’ ultimate applications. Then, we highlight two
temporal evaluation protocols and show how they attain a closer approximation of the real-life
conditions in which recommender systems are deployed. Second, we present a multi-objective
approach[6] of incorporating the temporal context to time-unaware recommender systems
without any change in model architecture. We introduce a naive recency objective as a means
to include temporal dynamics in typically time-independent recommender systems. We also
provide a measure of recency in the form of a performance metric. Through experiments on
three real-world publicly available datasets we show that the addition of the naive temporal
objective yields improvements not only in recency but also in relevance. Finally, we demon-
strate that the Pareto Fronts obtained with the added objective dominate those produced by
state-of-the-art models.

To the best of our knowledge, this is the first study quantifying the difference in recommender
system performance when evaluated using methods that model real-world environments, as
opposed to traditional techniques. We also show that a recommender system can be optimized
for both relevance and recency objectives simultaneously. To summarize, the main contributions
of this paper are as follows:

• We demonstrate how commonly used evaluation protocols do not provide adequate
modeling of real-world deployment settings. To combat this, we show two evaluation
techniques to facilitate offline modeling of online production environments that inherently
incorporate temporal dynamics;

• We introduce a “naive” recency function that can be utilized to create a temporal objective.
We show that optimizing for both temporal context and relevance [6] leads to solutions
that dominate those optimized just for relevance in both dimensions.



2. Related Work

2.1. Evaluating Recommender Systems

2.1.1. Traditional Recommender Systems.

Inputs and outputs share similarities with classification and regression modeling: a class variable
is predicted from a set of given features. Given that recommendation tasks can be seen as a
generalization of these, some evaluation techniques used for classification are transferable to
recommender systems.

In collaborative filtering research, recommenders are generally evaluated either through
strong or weak generalization, as characterized by [7]. In both approaches, models are trained
on observed interactions and validated or tested on those that are held-out. However, there
exist some key differences. Weak generalization is introduced in [8], where the held-out set is
created through random sampling of the available interactions of all users. Strong generalization
differs by taking disjoint sets of users for the training, validation, and testing sets. Following
this, some interactions are held-out from the validation and test sets and then approximated
using the recommender. Methods that encode user representation cannot apply strong general-
ization, as they cannot generate outputs for previously unseen users. An example of the strong
generalization approach can be seen in [3], whereas [9, 10, 11] all use weak generalization.

Several of these works emphasize that the application of their recommender system would be
in predicting future user actions, yet all validation and testing is done with randomly selected
interactions. This can break the time linearity as the knowledge of future interactions during
training can help predict a randomly sampled past interaction. While much effort is directed
towards establishing the importance of proper evaluation design, it is generally focused on
implementing relevant metrics to avoid under- or over-estimating real-world performance [12],
and not on the evaluation procedures themselves.

2.1.2. Temporal Recommender Systems.

They denote time-aware RS (TARS), and incorporate time explicitly or implicitly[5].
Temporal recommender systems can be taken to include sequence-aware recommender

systems (SARS), as a special form of time adaptive recommenders that focus on ordering rather
than specific time instances[5]. It is however important to note that while they can be evaluated
using similar techniques, SARS approach temporal dynamics from a different perspective,
therefore the resulting models can differ greatly from typical TARS[13]. [5] provide an extensive
overview of possible evaluation techniques, which served as an inspiration and point of reference
for this work. While traditional evaluation protocols may be used on temporal recommenders,
it is more representative to preserve the temporal ordering between interactions since this is
something that the recommender aims to learn. By extension, train, validation, and test splits
should also be ordered. [13] state that they were unable to find a consensus among evaluation
protocols used in recent sequence-aware recommender work, which is mirrored in our findings.
Yet we did determine that most recent SARS focus only on next item prediction, meaning they
output one recommendation. They also typically employ certain target item conditions to
decrease computational cost [5]. The target item conditions determine the (sub)set of items for



which a recommender should produce predictions and are specific for top-N recommendation
evaluation. The reduction of the computational costs is generally done through conditions that
rank one ground truth item against a set of other items false items. Examples can be found in
[14, 15, 16]. We return to the problem of subsampling in Section 3.

2.2. Temporal Context in Recommender Systems

In this paper, we introduce the concept of recency. An important note is that there are multiple
definitions of recency in recommender systems literature. In fact, this lack of consensus has
persisted for years. [17, 18] treat the recency of an item as an attribute that is user-dependent.
The value is determined by the last time the user interacted with a given item. [19, 20] also claim
to incorporate recency into their research: when recommending news articles, they measure
recency as the age of the item on the platform. Our analysis will follow the latter definition.
This is in line with our desire to explore the effects of a light-weight temporal addition on the
performance of traditional RS. Further work to determine the "ideal" definition of recency, while
undoubtedly invaluable, is outside the scope of this work.

3. Evaluation Protocols

We propose that the temporal dimension should be considered when evaluating the performance
of any recommender. While random sampling may be an appropriate target selection technique
for some classification or regression tasks, we argue that this is not the case when it comes to
predicting a user’s subsequent move.

Unlike the vast majority of evaluation methods applied to traditional recommenders, temporal
recommender systems literature does model the passage of time. However, as stated above, the
performance is often computed over a subset of the itemset and the user’s true chosen item.
The argument is that subsampling is necessary due to the complexity of the ranking task. While
this has some validity, itemsets of around 10,000 datapoints can be ranked highly efficiently,
especially when taking into consideration recent advancements in machine learning libraries
and GPU programming. Therefore, we do not utilize subsampling in our work.

The adoption of a recommender system in real scenarios has two major phases. The first,
called the development phase, is purely offline and theoretical. In this part, three separate
sets of data must be created: a training set that the model will use to learn item and user
representations, a validation set for hyperparameter tuning, and a test set to evaluate how
well the model performs. The second, called the deployment-ready phase, include interactions
with end-users. The maximum amount of data is leveraged to train a model with as much
information as possible, evaluate its performance, and then deploy it into production. In this
case, only two sets are needed: training and validation sets.

One downside of collaborative filtering methods is that most models are incapable of incorpo-
rating new items without retraining. While ways to alleviate this problem have been explored
[21], the issue remains widespread and worthy of more study, but lies outside the scope of this
paper. Therefore, we assume an industry-like environment: the recommender system will be
retrained regularly and will be exposed to clients for a relatively short period, ranging from a
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Figure 1: Two methods for temporal validation set target selection.

couple of days to a few months. We postulate that the performance of the recommender on the
last portion of historically available data is most indicative of how it will behave when deployed.

Our protocols focus on set creation. When selecting the target values in a validation set, we
take two possible approaches. The first, proportional selection, depicted in Figure 1a, selects the
final 𝑋% of each user’s interactions and uses these to create target items. Here we preserve
the time ordering of the input and target interactions, maintaining similarity with the real-life
use-case. The second approach, shown in Figure 1b, is based on a strict time cutoff to select the
target items of the validation set. This method is even closer to the real-world use case. However,
it does suffer from certain drawbacks as user interactions are not necessarily evenly distributed
through time, leading to some users being more represented than others in the target set. While
these are similar to the suggestions developed in [5], we underline that these approaches should
not be limited to evaluating TARS. It is crucial to approximate with maximum precision the
performance of a model when developing a novel system, before it is released into production.
The second approach directly models the real-world context and contains user-item interaction
sequences created after a specific strict time cutoff.

4. Recency to Improve Recommendation

The main task of a recommender system is to anticipate users’ future desires and suggest relevant
content. The relevance objective is the one that is most commonly found in recommender systems
literature and accounts for the accuracy or correctness. It actively focuses the recommender on
selecting the item(s) with which the users will most likely interact.

However, just recommending the most relevant items does not always satisfy all the concerns
of those building the system and it is not the only objective used in practice. We distinguish
two types of objectives: correlated and uncorrelated to relevance. The former ones correspond
to those whose optimization is linked to the relevance objective. Examples are novelty [22],
serendipity [23], and utility-based objectives, such as revenue. For the latter, not correlated to
relevance, examples can be found in diversity and fairness. In this work, we introduce a simple
utility-based objective used to inject temporal information alongside the relevance objective.
While the exploration of uncorrelated objectives is essential for the future of recommender
systems, we leave it for future work.



4.1. Adding Temporal Context

Based on our experience with real-life use-cases, we observed that users seem to gravitate
towards content that had more recently been added to a given platform. While we cannot
disclose internal facts and figures, the temporal objective described below was motivated by
behaviour exhibited across many months of user interactions observed internally. Building on
these findings, and works such as [19] and [20], we chose to explore the effects of incorporating
recency as an objective during the learning phase. Given an item 𝑥 with a timestamp 𝑡𝑥, we
further define the recency function 𝑓(·) as:

𝑓(𝑥) =

{︃
1 𝑡𝑥−𝑡𝑚𝑖𝑛

𝑡𝑚𝑎𝑥−𝑡𝑚𝑖𝑛
≥ 0.8

0.3
(0.8− 𝑡𝑥−𝑡𝑚𝑖𝑛

𝑡𝑚𝑎𝑥−𝑡𝑚𝑖𝑛
)× 10

3 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(1)

where 𝑡𝑚𝑎𝑥 and 𝑡𝑚𝑖𝑛 are the maximum (most recent) and minimum (oldest) timestamps over
the itemset. In 𝑓(·), we first scale all timestamps to [0, 1] using the min-max scaler, and then
apply a transformation inspired by [24].

We underline that this is a naive function which we found to best approximate user in-
teractions observed in-house. Works such as [25] rely on a power law distribution to model
temporal effects, highlighting that further exploration into use-case specific temporal context
approximations may yield exciting results.

The recency objective is formulated as a loss that stimulates the recommendation of recent
items. Each item in the itemset is assigned a recency weight, The vector is then used to weigh
item importance when calculating the loss. Adding weights into a traditional loss does not
affect the differentiability of the function.

To illustrate how our temporal objective can be easily integrated into a traditionally time-
unaware RS, we take as a use-case the state-of-the-art variational autoencoder Mult-VAEPR of
[3]. For the sake of brevity, we refer the reader to [3] for more details about the model. We thus
propose an extension of Mult-VAEPR, where the loss function for user 𝑢 is modified to:

ℒ𝛽(𝑥𝑢; 𝜃, 𝜑) = E𝑞𝜑(𝑧𝑢|𝑥𝑢) [log 𝑝𝜃(𝑓(𝑥𝑢) * 𝑥𝑢|𝑧𝑢)] − 𝛽 ·KL(𝑞𝜑(𝑧𝑢|𝑥𝑢)||𝑝(𝑧𝑢)) (2)

where the expected negative log-likelihood is modified to include the element-wise multiplica-
tion of input vector 𝑥𝑢 by 𝑓(𝑥𝑢), which corresponds to the recency scores of the given items in
𝑥𝑢. 𝛽 controls how much importance is given to the KL term, 𝑧𝑢 is a variational parameter of
the variational distribution 𝜃 and 𝜑 are model parameters.

4.2. Multi-Objective Optimization

Optimizing a recommender on multiple objectives is non-trivial. Thanks to the recent work of
[6], we employ the proposed multi-gradient descent algorithm for multiple objectives to train
our recommenders. After a standard forward pass, the loss and gradient are computed for each
objective and weights of the gradients are computing as a Quadratic Constrained Optimization
Problem [26]. This can be solved analytically for two objectives, or solved as a constrained
optimization problem as proposed in [27] for more than two objectives. Solving it allows us to
obtain the common descent vector and update the parameters. This training procedure enables



us to incorporate both our temporal context and the relevance objectives to retrieve time-aware
recommendations. The algorithm adapts the weight repartition between the two objectives in
an advanced manner to optimize both during training.

5. Experiments

5.1. Datasets

We study the performance of various models on three real-world publicly available datasets.

MovieLens-20M. Contains about 20 million ratings1, with values between 1 and 5. We
binarize the user-item interaction matrix, keeping ratings of 4 and above as positive feedback
to transform it into implicit feedback. We filter out all users with less than five ratings, and all
movies rated by less than five users. We focus on the last ten years of available data (2005-2015).
The preprocessed dataset contains 46,295 users, 9479 items, and 3.76M interactions with a
density of 0.86%.

Steam. Has review information from the gaming platform Steam2. We converted user-item
interactions into a positive feedback signals. The dataset contains reviews from 2010 to 2018;
however, the platform only sees an uptick in review activity after 2014, therefore we use 2014-
2018 for our analysis. After preprocessing the dataset contains 471,457 users, 13,018 items, and
3.14M interactions with a density of 0.09%.

Netflix. The well-known Netflix Prize Competition dataset3. It consists of over 100 million
ratings. We filter these ratings in the same way as the MovieLens ratings, and take the last two
years of activity (2003-2005). Because of low performance on certain baselines, we denote two
variants for the implicit feedback: one with threshold of 4 and above (Netflix≥4), the other one
with a threshold of 5 (Netflix≥5). After preprocessing the dataset contains 257,775 users, 13,995
items, and 38.87M interactions with a density of 0.59%.

5.2. Recommendation Techniques

We conduct experiment with the following well-known recommendation systems:

Mult-VAEPR. The MAMO framework4 and the setup from the original paper [3] are utilized.

SVD. The PyTorch implementation5 of the Singular Value Decomposition [28] is used, taking
the top 100 dimensions.

1https://grouplens.org/datasets/movielens/20m/.
2https://cseweb.ucsd.edu/~jmcauley/datasets.html.
3https://www.kaggle.com/netflix-inc/netflix-prize-data.
4https://github.com/swisscom/ai-research-mamo-framework.
5https://pytorch.org/docs/stable/generated/torch.svd.html.

https://grouplens.org/datasets/movielens/20m/
https://cseweb.ucsd.edu/~jmcauley/datasets.html
https://www.kaggle.com/netflix-inc/netflix-prize-data
https://github.com/swisscom/ai-research-mamo-framework
https://pytorch.org/docs/stable/generated/torch.svd.html


NCF. The Neural Collaborative Filtering [2], we take the implementation from 6, sample 4
negative instances for every existing user-item interaction, set the predictive factor of 64, and
the number of hidden layers for the multilayer perceptron (MLP) to three. We do not present
results obtained using pre-trained NeuMF, as they exhibited the same patterns as generalized
matrix factorizaion (GMF) and MLP, but did not give a significant improvement. To resolve
difficulties in obtaining good results with Netflix≥4 for GMF and MLP models, we used instead
the Netflix≥5 dataset.

BERT4Rec. We implement this sequence-aware recommender system from [14] in PyTorch
and integrate it with the MAMO framework. We take this model to show how directly encoding
temporal information in the model impacts performance. In this case the ordering represents the
temporal information. Hyperparameters were mostly taken from the original paper, otherwise
selected based on a simple grid search. The number of transformer layers is set to 2, the head
number is 4, head dimensionality is 64, and the dropout is 0.1. We use a sequence length of 100,
while the proportion of masked inputs is 0.2. The model is trained using the Adam optimizer
with a learning rate of 1e-4. All models were trained with the Adam optimizer, with a learning
rate of 0.001.

5.3. Experimental Setup

We explore whether validation set formation in the deployment-ready phase may lead to false
confidence in the performance of the evaluated model. In the deployment-ready phase, what
we call the validation set is not necessarily used for hyperparameter tuning, but to assess the
performance of the model before it is deployed. There are minor differences in the datasets
used for models with and without user representation. Models without user representation
require some input interactions to be able to predict targets, while those with simply need to be
passed a user identifier. We divide our experiments into three sets, corresponding to the type of
evaluation.

5.3.1. Traditional Evaluation.

Similarly to [3], we divide the users 80:10:10 to form a train, validation, and test set. The
target interactions are selected by randomly sampling 20% of the user-item interactions in the
validation and test sets.

We show that if a model is evaluated on and then applied to a task that entails predicting
randomly held-out interactions, the performance achieved on both validation and test sets is
comparable. This traditional approach is typically used to report model performance.

We then contrast performance on randomly held-out interactions in the validation set against
temporally held-out interactions in the test set. We take 5% of the users from the train set
to create the validation set and randomly hold-out 20% of their interactions. The train and
validation sets contain user-item interactions up to a specific point in time. The test set contains
the interactions and users from the train and validation sets as inputs, and the temporally
held-out interactions are targets, to simulate deployment in a commercial setting.

6https://github.com/guoyang9/NCF.

https://github.com/guoyang9/NCF


5.3.2. Temporal Evaluation.

We show that when evaluated with either a proportional or hard temporal cutoff, the model’s
performance is closer to what would be observed in a real-life setting. However, it is important
to note the ideal evaluation technique is heavily domain dependent.

We divide the train, validation, and test sets as follows. 5% of the users from the train form
the validation set. In the first approach, we hold out the last 20% of user-item interactions from
each user in the validation set. While in the other, we hold out the last couple of months of
activity and evaluate the model’s ability to predict these interactions. The test set contains the
interactions and users from the two other sets as inputs, and the temporally held-out interactions
are targets.

5.3.3. Temporal Evaluation with Added Temporal Context.

We introduce temporal context into the traditionally time-independent Mult-VAEPR by using
the work from [6] to optimize the model for accuracy and recency. To calculate the recency
score we take the timestamp of the moment that the item first became available, or the first
recorded instance of any user interacting with the given item. This timestamp is 𝑡𝑥 in the
recency function 1. The strict temporal cutoff validation set is utilized, as well as the temporal
test set described previously.

5.4. Evaluation Metrics

We evaluate models using three ranking metrics, as RS can often only show a predefined number
of recommendations. We ensured that the items that the user had previously interacted with
were removed from the output before the top-k results were selected for metric calculation.

• Precision@K: calculates how many of the recommended items are relevant to the user;
• Recall@K: quantifies the proportion of relevant items in the top-k recommended items by

calculating how many of the desirable items are are suggested to the end-user. We take
our definition from [3];

• Recency@K: assigns a recency score to each item, calculating the rating of the top-k
recommended and relevant items. For user 𝑢 with relevant items 𝐼𝑢 we define 𝜔(𝑘) as
the item at rank 𝑘, where I is the indicator function:

𝑅𝑒𝑐𝑒𝑛𝑐𝑦@𝐾(𝑢, 𝜔, 𝑓) =
𝐾∑︁
𝑘=1

I[𝜔(𝑘) ∈ 𝐼𝑢]× 𝑓(𝜔(𝑘)) (3)

6. Results

6.1. Traditional Evaluation.

This experiment aims to show that the traditional way of evaluation recommender systems,
shown in Table 1, is not a faithful representation of the environments in which they are actually



Table 1
Results of initial Mult-VAEPR experiments, evaluated on a traditional evaluation protocol. We report
Recall / Precision at 𝑘 = 20.

Dataset Valtrad Testtrad

ML-20M 0.31 / 0.17 0.31 / 0.17
Steam 0.20 / 0.02 0.20 / 0.02
Netflix≥4 0.35 / 0.19 0.35 / 0.19

Table 2
Results of the Mult-VAEPR, SVD, GMF, and MLP evaluated on a traditional, proportionally selected
temporal, and strict cutoff validation set, as well as on a temporally held out test set. Results of BERT4Rec
evaluated on a strict cutoff validation set and a time delayed test set. We report Recall / Precision at
𝑘 = 20.

Dataset Model Valtrad Valprop Valcutoff Testtemp

ML-20M

Mult-VAEPR 0.32 / 0.18 0.26 / 0.13 0.11 / 0.06 0.11 / 0.07
SVD 0.25 / 0.22 0.14 / 0.11 0.07 / 0.03 0.11 / 0.07
GMF 0.25 / 0.22 0.11/ 0.10 0.08 / 0.03 0.10 / 0.07
MLP 0.25 / 0.23 0.12 / 0.10 0.07 / 0.03 0.11 / 0.07
BERT4Rec - - 0.20 / 0.09 0.15 / 0.08

Steam
Mult-VAEPR 0.20 / 0.02 0.14 / 0.02 0.11 / 0.01 0.13 / 0.01
SVD 0.10 / 0.02 0.10 / 0.02 0.09 / 0.01 0.08 / 0.01
BERT4Rec - - 0.21 / 0.02 0.17 / 0.02

Netflix≥4
Mult-VAEPR 0.35 / 0.18 0.22 / 0.10 0.12 / 0.05 0.10 / 0.05
SVD 0.23 / 0.16 0.23 / 0.16 0.09 / 0.05 0.07 / 0.04
BERT4Rec - - 0.24 / 0.13 0.20 / 0.05

Netflix≥5
SVD 0.23 / 0.10 0.23 / 0.11 0.12 / 0.05 0.09 / 0.03
GMF 0.31 / 0.14 0.30 / 0.14 0.14 / 0.05 0.12 / 0.04
MLP 0.31 / 0.14 0.30 / 0.14 0.14 / 0.05 0.12 / 0.04

deployed. The good performance achieved by evaluating in this way can provide a false sense
of security.

Our claim is supported by the values highlighted by Table 2. Even though the validation
sets are not identical to the ones before, the performance observed is very similar. However,
it degrades on the time delayed test set, or to be more precise, when we simulate what would
happen in a production setting. Drops in performance of -65.63%, -35.00%, and -71.43% can
be observed, on the Recall@20 values. We postulate that this discrepancy leads to significant
dissonance between the results of certain recommenders as reported in literature, and those
observed in their real-life application.

6.2. Temporal Evaluation.

The results shown in Table 2 depict what happens when using traditional validation as opposed
to our proposed evaluation sets. The table illustrates how the strict cutoff validation set



approximates the deployment behavior. For all datasets, this approach seems to be a closer
estimation of the "real-life" performance. For example, the drop in performance is reduced
from -71.43% to -16.67% on the Netflix≥4 dataset for the Mult-VAEPR model. The proportionally
selected validation sets seems to work well for the Steam dataset, and we know from industry
experience that it can be good on others. However, this seems to be highly dataset specific.

Table 2 also shows that this phenomenon is not isolated to the Mult-VAEPR, but can be
repeated with the SVD, GMF, and MLP models. As mentioned before, we were unable to conduct
experiments on Netflix≥4 with the GMF and MLP models; therefore we report their results
on Netflix≥5. It is important to note that simpler methods, especially those based on matrix
factorization, do not deal well with the Steam dataset. This is the sparsest dataset that we work
with which seems to make it difficult to learn anything meaningful. Based on this, we exclude
the Steam dataset for GMF and MLP. However, we keep the results for SVD.

We strongly recommend that these evaluation methods be taken into account when presenting
novel achievements in the field. When feasible, we recommend to apply both protocols.

6.3. Temporal Evaluation and Temporal Models.

The results presented so far were achieved using traditional recommender architectures, with
no way of learning temporal dynamics. To show that it is possible to achieve better results on
the given datasets, we incorporate the temporal dynamics into the training process, by utilizing
BERT4Rec. The results are shown in 2, and dominate all traditional solutions. This confirms
our hypothesis that temporal dynamics should be accounted for in both evaluation design and
model architecture in order to attain the best possible recommenders.

With BERT4Rec the interaction ordering is encoded in the model. The authors acknowledge
that the naive recency objective does not reproduce this effect when added to traditional RS.
However, the goal of the subsequent subsection is to illustrate that the simple addition of a
cheap time-dependant weight affects performance in a meaningful way.

6.4. Temporal Evaluation with Added Temporal Context.

To integrate the temporal context into the traditional models, our following contribution has the
recency included as an objective influencing the optimization. We refer to the multi-objective
Mult-VAEPR as the Multi-Objective Recency Enriched mult-VAEPR(MOREVAE).

We present both the Pareto Fronts obtained during training and the results of the best models
on the test sets. These results were obtained through more intense training than those shown
in the previous sections in an attempt to extract the best possible performance from the Mult-
VAEPR. The Pareto Fronts were generated by evaluating on the strict cutoff validation sets during
training, and the best models were chosen by selecting those with the highest Recall@20 and
applying them to the time delayed test sets. Figure 2 shows that the multi-objective approach not
only dominates the single objective one in terms of recency, but that optimizing for recency also
increases the relevance of the recommendations, validating our initial intuition. The results of
the best models over the test sets are shown in Table 3. The improvements obtained are 18.18%,
0.00%, and 20% for Recall@20; 14.29%, 0.00%, and 25.00% for Precision@20. The improvements
seen in Recency@20 are 104.35%, 20.00%, and 94.12%.



Table 3
Comparison of Mult-VAEPR and MOREVAE results obtained on temporally held out test sets. We report
Recall, Precision, and Recency at 𝑘 = 20.

Dataset Model R P Re

ML-20M
Mult-VAEPR 0.11 0.07 0.23
MOREVAE 0.13 0.08 0.47

Steam
Mult-VAEPR 0.13 0.01 0.15
MOREVAE 0.13 0.01 0.18

Netflix≥4
Mult-VAEPR 0.10 0.04 0.34
MOREVAE 0.12 0.05 0.66
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(a) ML20m dataset.
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(b) Steam dataset.

0.4 0.5 0.6 0.7 0.8 0.9
Recency@20

0.11

0.12

0.13

0.14

0.15

Re
ca

ll@
20

Single-Objective
Multi-Objective

(c) Netflix≥4 dataset.

Figure 2: Pareto Fronts obtained through optimizing on one objective (accuracy), and two objectives
(accuracy and recency).

7. Conclusion

Following standard offline recommendation evaluations during development may lead to false
confidence when deploying models in real-life scenarios. Utilizing random sampling to hold out
data is not an adequate approximation of many real-life use-cases. Previous research generally
focuses on developing better metrics to reflect real-world performance, but still omits temporal
context. We highlight this lack of standardization and propose two temporal evaluation protocols
that empirically better approximate real-life conditions.

Our second contribution is to propose leveraging a multi-objective approach and train models
on relevance and recency simultaneously. We show that a naive recency objective can be used
to integrate temporal information in existing time-unaware recommenders. Experiments on
three real-world publicly available datasets demonstrate that our method produced solutions
that strictly dominate those obtained with a model trained on a single-objective optimization.

We explored datasets that are frequently used in recommender systems research, all related
to digital media content. Digital media content is consumed frequently and generally without
much repetition. The importance of recency and capturing transient behavioral trends may not
be equivalent in other recommender systems applications, such as grocery or clothes shopping.
The influence of temporal dynamics on these sectors is an exciting topic, and we leave it to
future academic and commercial research.
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