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Abstract

The goal of fairness in classification is to learn a
classifier that does not discriminate against groups
of individuals based on sensitive attributes, such as
race and gender. One approach to designing fair al-
gorithms is to use relaxations of fairness notions as
regularization terms or in a constrained optimiza-
tion problem. We observe that the hyperbolic tan-
gent function can approximate the indicator func-
tion. We leverage this property to define a differen-
tiable relaxation that approximates fairness notions
provably better than existing relaxations. In addi-
tion, we propose a model-agnostic multi-objective
architecture that can simultaneously optimize for
multiple fairness notions and multiple sensitive
attributes and supports all statistical parity-based
notions of fairness. We use our relaxation with
the multi-objective architecture to learn fair clas-
sifiers. Experiments on public datasets show that
our method suffers a significantly lower loss of ac-
curacy than current debiasing algorithms relative
to the unconstrained model.

1 INTRODUCTION

Machine learning is omnipresent. Machine learning sys-
tems have become ubiquitous in our daily lives and society.
They are being adopted into an increasing variety of ap-
plications at an accelerating pace, including high-impact
domains such as healthcare, job hiring, education, and crim-
inal justice, among others (Barocas et al., 2019). Despite
this, questions remain on the ethical soundness of many
such algorithms, as AI/ML systems have often been demon-
strated to have unintentional and undesirable biases against
sensitive attributes such as age, gender, and race.

*Most of the work was done while at EPFL and Swisscom.

Automated predictions can be biased. We consider an
algorithm as biased or discriminatory when it does not sat-
isfy a preconceived notion of equality with respect to one
or more sensitive attributes. The COMPAS score (Angwin
et al., 2016), used in courts in the U.S. to predict the probabil-
ity of recidivism, is one of the most well-known examples of
discrimination by algorithms (Angwin et al., 2016). Among
the defendants who do not re-offend, the algorithm predicts
black defendants to be higher risk at a much higher rate
than white defendants. This can, in turn, lead to a further
exacerbation of systemic bias through a negative feedback
loop where the results of the algorithm bias the data even
further, reflecting the bias even more in the next round of
predictions.

The bias can increase over time. A similar bias, which
consists of reinforcing existing beliefs, is also present on
social media: the filter bubble (Pariser, 2011). The system
recommends content that we tend to agree with, further rein-
forcing our views and putting us in an “echo chamber" with
other users with similar views, leading to polarization with
users with opposing views. This is believed to have heavily
influenced the 2016 U.S. presidential elections (Baer, 2016),
and it is the kind of bias that can, over time, change the
structure of society. Just as ever-present machine learning
algorithms are in society, so is the unintentional algorithmic
bias arising from such applications, thus making it critical
to study fairness in machine learning.

Debiasing approaches can be divided into three main cat-
egories. Firstly, we have pre-processing algorithms, where
the data is processed before training to rid it of bias with the
expectation that the classifier learned on the modified data
would be fair (Kamiran and Calders, 2012; Sattigeri et al.,
2019; Calmon et al., 2017). Secondly, we have in-processing
algorithms that propose changes at training time, often in the
form of minor changes to existing architectures, or entirely
different algorithms (Celis et al., 2019; Lohaus et al., 2020;
Zafar et al., 2017b). One approach to in-processing is to de-
fine relaxations of fairness notions and solve a constrained
optimization problem or use the relaxations as regularization
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terms. Lastly, there are the post-processing algorithms that
filter the output of the classifier to ensure fairness (Hardt
et al., 2016; Chierichetti et al., 2017; Chzhen et al., 2019).

Debiasing is a naturally multi-objective problem. Most
real-world applications have multiple sensitive attributes.
We might want to satisfy different fairness notions for each
attribute or several notions for a single attribute, making
debiasing a naturally multi-objective problem. However, the
research on multi-objective approaches to fairness is very
sparse: most methods are specialized towards a specific
fairness notion and only apply to a single attribute. More-
over, many fairness relaxations do not approximate the true
fairness value well (Lohaus et al., 2020).

In this work, we first define a novel fairness relaxation and
show that it approximates the true fairness value better than
existing relaxations. Second, we propose a model-agnostic
gradient-based multi-objective algorithm that supports mul-
tiple sensitive attributes and all notions of fairness that re-
quire a form of statistical parity across groups. Experiments
on four real-world datasets show that our novel relaxation
integrated with the proposed multi-objective algorithm finds
fair algorithms while suffering a lower loss of accuracy than
state-of-the-art algorithms. Moreover, it performs effectively
in simultaneously debiasing for multiple sensitive attributes
and measures of fairness with a very low loss of utility.

2 RELATED WORK

We consider the following notions of fairness for our anal-
yses: demographic parity (DP) and equality of opportu-
nity (EOP). Let the positive prediction be the favorable one
in a binary classification problem. For example, for loan
default prediction, predicting non-default is favorable. If the
sensitive attribute is age with groups ‘young’ and ‘adult,’ DP
requires the proportion of individuals labeled as positive to
be the same for both ‘young’ and ‘adult’ groups. In contrast,
EOP requires the true positive rate to be the same for both
‘young’ and ‘adult’ groups. These definitions are formalized
in Section 3.

Relaxation-based Approaches. The approach used by
Donini et al. (2018); Zafar et al. (2017a,b) is to write DP or
EOP in an equivalent but easier to handle form, and replace
the indicator function by a relaxation. Zafar et al. (2017a,b)
used a covariance measure between the sensitive attribute
and the model parameters as a proxy for the fairness con-
straint. This leads to a convex constraint for DP (Zafar et al.,
2017b) but a non-convex one for EOP (Zafar et al., 2017a).
Zafar et al. (2017a) proposed a convex-concave optimization
process to deal with the non-convex constraint. For linear
models, the covariance constraints reduce to a linear relax-
ation of the fairness measure. Lohaus et al. (2020) designed
an elegant approach where they used an existing convex
relaxation of the fairness measures as a regularization term

in the loss function, with regularization parameter λ. They
proved that the relaxed fairness constraint is a continuous
function of λ, enabling a binary search of λ to find a prov-
ably fair classifier. Celis et al. (2019) proposed a method
to solve multiple fairness measures simultaneously by re-
ducing a constrained optimization of the loss function to an
unconstrained problem by the lagrangian principle.

While these methods are all attractive approaches and work
well in practice for a single sensitive attribute, they suffer
from two drawbacks: 1. they cannot be integrated into any
machine learning model, and 2. require distinct and separate
algorithms to solve. Besides, Lohaus et al. (2020) require
strong conditions on the classifier, and Zafar et al. (2017a,b)
cannot handle multiple fairness measures simultaneously.
In comparison, our method handles multiple parity-based
measures and is model-agnostic.

Moreover, several existing relaxations inadequately approx-
imate the true fairness value: the relaxations might be satis-
fied, but the model may still be unfair (Lohaus et al., 2020).
Using the evaluation methods proposed in Lohaus et al.
(2020) to gauge the effectiveness of different relaxations,
we note that our novel relaxation is empirically better.

Multi-Objective Approaches. The line of research that
involves multiple objectives in fairness is very recent. Val-
divia et al. (2020) proposed an evolutionary approach to
optimize for several objectives, using the multi-objective
algorithm to search the space of hyperparameters of the
model to find one that will work well on multiple objectives.
However, it is possible that for some algorithms, there is no
set of hyperparameters that perform well for all the objec-
tives. This method is also infeasible to apply to large models
since it involves training and evaluating hundreds of hyper-
parameter tuples. Finally, Celis et al. (2019) proposed an
algorithm for a class of statistical-based fairness measures.
Their proposal is a meta-algorithm that operates by esti-
mating conditional probabilities. In contrast, our approach
can take any existing loss-based model as part of the multi-
objective architecture. This would make it much easier for
example to reuse production models which have already
been optimized and would save the need to implement new
architectures from scratch to account for fairness.

3 BACKGROUND

Let x ∈ Rd be the features, where d is the total number
of features, and x = (z, a1, a2 . . . ai . . . at). Each ai refers
to a sensitive attribute, and z the rest of the attributes. The
feature space for z, ai, and x is denoted by Z , Ai, and X ,
respectively. Therefore, the domain of x is:

X = Z ×A1 ×A2 × . . .Ai × . . .AT (1)

For the sake of simplicity of notation, we assume that we
have only one sensitive attribute, that is T = 1, and it is



denoted simply by a, with feature spaceA = {−1, 1}. Each
individual is assigned an outcome y from the feature space
Y = {−1, 1}, which is the label we want to predict for x.
Assume that there is a distribution PD over the domain
D = X ×A×Y . Each (x, a, y) is sampled i.i.d. from PD.
We denote the predictor by h : X → Y , where the pre-
dicted outcome of x is h(x) ∈ {−1, 1}. We define h(x) as
sign(f(x)), where f : X → R maps each x to a real-valued
number, and is fair with respect to the sensitive attributes.

Demographic Parity (DP): A classifier f satisfies demo-
graphic parity if the probability of the outcome is indepen-
dent of the value of the sensitive attribute:

P[f(x) > 0 | a = −1] = P[f(x) > 0 | a = 1] (2)

Difference of Demographic Parity (DDP): The first step,
in writing Equation 2 as an expression that can be used in
a gradient-based optimization, is to relax the definition to
be a difference between the expected values of quantities on
either side of the equality. This is called the Difference of
Demographic Parity (DDP), defined as:

DDP(f) = E
PD

[1f(x)>0|a = −1]− E
PD

[1f(x)>0|a = 1]

(3)
where 1c is the indicator function on the condition c, which
is to say that 1c is 1 if c is true, and 0 otherwise.

It is clear that when DDP(f) = 0, we achieve perfect de-
mographic parity, although that is usually not a realistic
goal. We can relax this requirement by using a threshold:
given a threshold τ ≥ 0, we say that f is τ -DDP fair if
|DDP(f)| ≤ τ . However, this is still not enough to define
a differentiable relaxation; we only have an empirical esti-
mate P̂D of PD consisting of n points. In that manner, the
empirical estimate of DDP can be written as:

D̂DP(f) =
1

n−1

∑
P̂D
a=−1

1f(x)>0 −
1

n1

∑
P̂D
a=1

1f(x)>0 (4)

Here n−1 is the number of points with a = −1 and n1
is the number of points with a = 1. The total number of
points then is n = n−1 + n1. This expression is very close
to what we can use as a constraint. However, the main
problem with using this expression directly in a gradient-
based optimization is the non-differentiability because of
the indicator function. The differences between different
relaxations then come from how the indicator function is
relaxed in the expression above.

Equality of Opportunity (EOP): A classifier f satisfies
equality of opportunity if the probability of getting a true
positive is independent of the value of the sensitive attribute:

P[f(x) > 0 | a = −1, y = 1] = P[f(x) > 0 | a = 1, y = 1]
(5)

Difference of Equality of Opportunity (DEO): We relax
Equation 5, similarly than for the demographic parity in
Equation 4, to get the Difference of Equality of opportunity
(DEO). Then the empirical version of DEO is expressed as
follows:

D̂EO(f) =
1

n−1

∑
P̂D
a=−1
y=1

1f(x)>0 −
1

n1

∑
P̂D
a=1
y=1

1f(x)>0 (6)

3.1 FAIRNESS RELAXATIONS

The differences between relaxations come from how the
indicator function is relaxed in the expressions D̂DP(f) and
D̂EO(f). We conduct all analyses for demographic parity;
the extension to EOP is straightforward by conditioning on
the positive label.

Linear Relaxations: Donini et al. (2018); Zafar et al.
(2017b) proposed a linear relaxation, where the indica-
tor function is simply replaced by a linear classifier f(x).
D̂DP(f) can then be written in the following equivalent
form after substituting 1f(x)>0 by f(x) (Lohaus et al.,
2020):

∣∣ LR
D̂DP

(f)
∣∣ =

∣∣∣∣∣∣ 1

n

∑
P̂D

C
(
a, P̂D

)
f(x)

∣∣∣∣∣∣ ≤ τ (7)

where C(a, P̂D) is simply a constant multiplicative factor.

Convex-Concave Relaxations: Zafar et al. (2017a) pro-
posed the convex-concave relaxation, where 1f(x)>0 is re-
laxed to min(0, f(x)). Let p̂1 be the empirical estimate
of the proportion of individuals with a = 1. For the case
of such a relaxation for DDP, D̂DP(f) can be written in
the following equivalent form after substituting 1f(x)>0 by
min(0, f(x)) (Lohaus et al., 2020):

∣∣CCR
D̂DP

(f)
∣∣ =

∣∣∣∣∣∣ 1n
∑
P̂D

C′
(
a, P̂D

)
min(0, f(x))

∣∣∣∣∣∣ ≤ τ
(8)

4 A NOVEL FAIRNESS RELAXATION

The existing relaxations described do not approximate the
true DDP value accurately. To illustrate this, we use a two-
dimensional toy dataset for binary classification, similarly
to Lohaus et al. (2020). Various Gaussian distributions are
used to generate the points for each label. Each point is
also assigned one of two groups to simulate the sensitive
attribute. As we can see from Figure 1, existing relaxations
do not faithfully capture the true DDP value.



(a) True DDP (Ideal) (b) Linear (c) Convex-Concave (d) Hyperbolic Tangent (Ours)

Figure 1: Each plot describes the family of linear classifiers in two dimensions which can be used to separate the classes
in a two dimensional synthetic dataset. The decision boundary is defined as x2 = a1x1 + a0, meaning that f(x) =
−x2 +a1x1 +a0. The point at (a0, a1) on each plot gives normalized value of each of the following quantities for a classifier
f(x) with parameters (a0, a1): (1a) True Difference of demographic parity (DDP), (1b) Linear relaxation of the DDP, (1c)
Convex-concave relaxation of the DDP, and (1d) Hyperbolic tangent relaxation (HTR). Yellow is fair. Ideally, we want the
plot of the relaxations to be like that of the true DDP (1a).

To solve this problem, we introduce a new relaxation, called
the hyperbolic tangent relaxation (HTR). Let sign(x) denote
the signum of x, i.e. sign(x) is 1 if x > 0, −1 if x < 0 and
0 if x = 0. Figure 1 further illustrates that our relaxation is
the best at capturing the true DDP.

Theorem 1. The hyperbolic tangent of n ∗ x converges to
the sign of x for every fixed x ∈ R as n goes to infinity.
Formally,

lim
n→∞

tanh(n ∗ x) = sign(x)∀x ∈ R (9)

Proof. The idea is that replacing x by n ∗ x in tanh(x)
compresses the horizontal scale. A more detailed proof is
provided in the appendix .

We can leverage Theorem 1 to find an expression that con-
verges to the indicator function of x > 0.

Lemma 1. tanh(n ∗max(0, x)) converges to the indicator
function of x > 0 as n goes to infinity. Formally,

lim
n→∞

tanh(n ∗max(0, x)) = 1x>0 ∀x ∈ R (10)

Proof. The proof is by simply replacing x in Theorem 1 by
max(0, x). The details are worked out in the appendix.

Hyperbolic Tangent Relaxation (HTR): Instead of re-
laxing 1f(x)>0 by f(x) or min(0, f(x)) as proposed in the
linear and convex-concave relaxations, respectively, we pro-
pose tanh(c ∗ max(0, f(x))), for small constants c. The
larger the value of c, the better we can approximate the indi-
cator function, but at the cost of degradation in the gradient’s
behavior.

We denote tanh(c ∗ max(0, x)) as t(c, x). Formally, the
hyperbolic tangent relaxation for the DDP, denoted byHTR

can be written as follows, for a chosen constant c:

HTR
D̂DP

(f) =
1

n−1

∑
P̂D

a=−1

t(c, f(x)) − 1

n1

∑
P̂D
a=1

t(c, f(x))

(11)
Finally, Figure 1 demonstrates how the HTR is a better
approximation of DDP than existing relaxations.

5 THE MAMO-FAIR ALGORITHM

As our multi-objective optimization method, we use the
algorithm of Poirion et al. (2017) with modifications sug-
gested by Milojkovic et al. (2019). We assume without loss
of generality that all objectives are to be minimized. A multi-
objective optimization problem can then be formulated as
follows:

min
w∈Rd

L(w) = min
w∈Rd

(`1(w), `2(w), . . . `k(w)) (12)

where `i : Rd → R ∀i = 1, ..., k are the k objectives,
with k ≥ 2. We interpret L(w) as a multi-objective loss
function and each `i(w) as one of the loss functions to be
optimized by a machine learning model, with w being the
model parameters. Unlike in single-objective optimization
problems, solutions of a multi-objective optimization prob-
lem are not ordered linearly. They are instead compared by
dominance of solutions.

Definition 1 (Dominance of a Solution). A solution w1

of Equation 12 dominates another solution w2 6= w1 if
`i(w1) ≤ `i(w2) ∀ i = 1, ..., k and there exists i0 ∈ [1, k]
such that `i(w1) < `i(w2).

Definition 2 (Pareto Optimality). A solution w∗ of Equa-
tion 12 is pareto optimal if no other solution w dominates it.

Definition 3 (Pareto Front). The pareto front of a set of
solutions of Equation 12 is the set of all non-dominated
solutions.



We denote the gradient of objective `i(w) by∇w`i(w). The
key idea of the algorithm in optimizing simultaneously sev-
eral objectives is to find a single vector, that gives the descent
direction for every objective. This is called the common
descent vector (CDV). The Karush-Kuhn-Tucker (KKT)
conditions (Karush, 1939; Kuhn and Tucker, 1951) provide
necessary optimality conditions for the solution of a de-
terministic gradient-based optimization. A solution which
satisfies the KKT conditions for a multi-objective optimiza-
tion problem is called a pareto stationary point.

Definition 4 (Pareto Stationary). A solution w is pareto
stationary if:

∃(α1, , α2, . . . , αk)

∣∣∣∣∣
k∑

i=1

αi = 1,

k∑
i=1

αi∇w`i(w) = 0 (13)

Note that pareto stationarity is a necessary but not sufficient
condition for optimality. The pareto stationary point admits
a solution in the convex hull of the set {∇wli(w) | i ∈
[k]} (Désidéri, 2012), which is the same as saying that the
zero vector needs to be in the convex hull. The key idea is
that the pareto stationary point can be found by iteratively
solving the following optimization problem.

Definition 5 (Quadratic Constrainted Optimization Prob-
lem (QCOP)). The QCOP for our purpose is defined as
follows:

min
α1,...,αn


∥∥∥∥∥
n∑
i=1

αi∇w`i(w)

∥∥∥∥∥
2 ∣∣∣∣∣

n∑
i=1

αi = 1, αi ≥ 0


(14)

Let p∗ be the vector of a solution of the Equation 14, mean-
ing that it is a convex combination of gradients specified by
alpha. Then we have either:

1. ‖p∗‖ = 0, implies that the solution w is pareto station-
ary;

2. ‖p∗‖ > 0, the solution w is not pareto stationary and
∇wL(w) = p∗, where ∇wL(w) denotes the common
descent vector.

The only key ingredient missing to describe the algorithm
is the gradient normalization, proposed by Milojkovic et al.
(2019). This allows us to overcome the issue of having losses
with different scales.

Definition 6 (Gradient normalization). Let
li(w), . . . , lk(w) be the k objectives and ∇w(li(w))
the gradient of li(w) for all i = 1, ..., k. We define winit
as the initial weight of the model. Then, we normalize the
gradient as follows:

∇wli(w) =
∇wli(w)

li(winit)
(15)

We now have all the components to describe the final algo-
rithm. The general idea is:

1. Calculate and normalize each gradient;

2. Find the common descent direction through QCOP;

3. Update gradients by performing the descent step;

4. Repeat for an appropriate number of batches and
epochs.

The pseudocode is provided in the appendix. The procedure
is model-agnostic, so long as the model supports gradient-
based optimization. In particular, unlike other methods
which require convexity or are based on specific optimiza-
tion algorithms, this method works well with neural net-
works as well. This is note-worthy because increasingly
many real-world applications use complex non-convex mod-
els.

The key to using the algorithm is implementing fairness
notions as loss functions, which is where our hyperbolic
tangent relaxation comes into play.

6 EXPERIMENTS

In this section, we assess the performance of our method
based on experiments on four publicly available datasets.

6.1 DATASETS

We use the following datasets:

• Adult (Dua and Graff, 2017): the task is to predict if
income is above or below 50k$. Among the 14 features
are attributes gender and race. We use sex and a bina-
rized version of race as sensitive attributes. y = 1 cor-
responds to the favorable prediction (income≥50k$).
There are a total of 48,842 instances;

• Compas (Angwin et al., 2016): the task is to predict
if a defendant will racedeviate. There are 53 attribute,
among them race and sex, which we use as sensitive
attributes. There are 6,167 samples in total;

• Dutch census (Žliobaite et al., 2011): Census data of
the Netherlands in 2001. Occupation is used as a proxy
for low and high income, and sex is used as a sensitive
attribute. The data contains 60,420 instances with 12
features;

• Celeb attributes (Liu et al., 2015): it is a dataset con-
taining 202,599 face images of celebrities. This is ac-
companied by a list of 40 binary attributes for each
image. We use this attribute dataset for classification,
with the attribute smiling used as a label, and sex as a
sensitive attribute.



For the Compas dataset we use 3,000 samples for training,
2,000 for validation and the rest for testing. For the others
we use 10,000 samples for training, 5,000 for validation,
and the rest for testing.

6.2 BASELINES

Two Objectives. We consider three baselines: a con-
strained optimization method with the linear relaxation of
Zafar et al. (2017b); the recent method of Cotter et al. (2019)
for solving the lagrangian, and the searchFair algorithm of
Lohaus et al. (2020). We directly report the results of our
baselines from Lohaus et al. (2020). As the authors provide
all experimental details necessary, we ensured to use pre-
cisely the same setting to be able to compare the relaxation-
based approaches. In particular, we use the same sizes for
training and test sets and the number of runs, as well as the
same sets of features and pre-processing.

Beyond Two Objectives. For more than two objectives,
we cannot compare against traditional debiasing algorithms.
In this case, we employ the following baselines:

• Sum of losses: Multiple models with a single objective
optimization. We represent the final objective as the
sum of all objectives;

• Unconstrained model: A model without any con-
straint regarding fairness.

6.3 OBJECTIVES

We recall that our algorithm solves the optimization problem
described in Equation 12. When optimizing for a single
sensitive attribute for a single measure of fairness, we have
two objectives: `1 and `2. `1 is the performance objective,
for which we use the binary cross-entropy (BCE), and `2
is the fairness objective. `2 corresponds to the hyperbolic
tangent relaxation of the fairness notion along with BCE
added as a regularizer. For the DDP, the fairness objective
is:

`2 = HTR
D̂DP

(f) + λ ∗BCE(f) (16)

where λ is the binary cross-entropy regularizer. The regular-
izer is needed to avoid trivial constant solutions that attain
perfect fairness, hence taking the fairness loss to zero.

The choice of the constant c in the HTR relaxation. Re-
call that the HTR relaxation defined in Equation 11 requires
the specification of a constant c which allows us to decide
how closely we want to approximate the true fairness. There
is a trade-off between the behaviour of the gradient and the
value of c. A higher value of c gives a better approximation
of the fairness value but a worse-behaving gradient. We
choose c = 3 based on the empirical results. Exploring the

impact of this constant on the optimization process for vari-
ous relaxations could be an interesting direction of future
work.

For each additional sensitive attribute or fairness notion we
want to optimize for, we add an analogous fairness objec-
tive. In other terms, the hyperbolic tangent relaxation of the
fairness notion in question, with the BCE as a regularization
term.

6.4 METRICS

Single Fairness. The goal is to learn classifiers that give
the best improvement in fairness for the least decrease in
accuracy, compared to the unconstrained model. We report
the fairness difference metric (DDP or DEO) and the accu-
racy. We emphasize that DDP and DEO are representative
choices, and the algorithm supports an array statistical parity
based metrics. See Appendix C for details.

Multi-Fairness. When having more than one sensitive
attribute and/or fairness notion, a single point solution is
not representative of the overall performance. Therefore, we
compare the pareto fronts instead, that we denote by S. The
pareto front consists of a set of points in Rk, where k is the
number of objectives.

Constructing the pareto front. The pareto front is con-
structed through a single training run of the algorithm. Af-
ter each epoch, the trained model is added to the pareto
front if it is pareto-optimal with respect to every point in
the existing pareto front. The same method is used for the
multi-objective algorithm. While doing several runs for our
algorithm to construct the pareto front would make our re-
sults look stronger, we have avoided this to not give our
approach an undue advantage over methods that do not have
trade-off parameters.

As metrics, we employ the hypervolume and the spread of
the pareto front:

• Hypervolume (Zitzler et al., 2007): the dominance
volume enclosed by the pareto set in Rk with respect
to the reference point. The larger the hypervolume, the
better the solution. For our purpose, the reference point
is always the origin;

• Spacing (Okabe et al., 2003): the spacing of S is a
measure of how spread out the pareto front is. Spacing
is low when the solutions are all in a single cluster,
and high when they form a spread out pareto front.
Formally, the spacing is defined as:

SP (S) =

√√√√ 1

|S − 1|

|S|∑
i=1

(
di − d̄

)2
(17)

where di is the shortest l1-norm from si to any other



point in S:

di = min
sr∈S,sr 6=si

k∑
m=1

|lm (si)− lm (sr)| (18)

6.5 SOLUTION SELECTION

Selecting the best solution from the pareto front of a single
run is nontrivial. Wang and Rangaiah (2017) list several
strategies of selecting a point from the pareto front. Here
we use the Linear Programming Technique for Multidimen-
sional Analysis of Preference (LINMAP) method proposed
by Srinivasan and Shocker (1973). LINMAP selects the
point in the pareto front closest to ideal point. We choose
this strategy as we can expect it to not favour a particular ob-
jective and give a model that finds a good trade-off between
different objectives.

We use a training, validation, and test set for each run of the
multi-objective algorithm. For each run, the model trained
on the training set is evaluated on the validation set first, and
the LINMAP strategy is used on the results of validation
set to select the final point. The model corresponding to
this point is the chosen model for each run and used for
evaluation of the test samples. In this manner, we ensure
that we are not fitting to the test samples for the results.

6.6 OPTIMIZATION FRAMEWORK

We implemented the MAMO-fair algorithm as a publicly-
available modular framework which implements most statis-
tical parity based group fairness metrics. All implementation
is in pytorch. The full list of implemented objectives is pro-
vided in the appendix. The framework is easy to extend by
implementing other fairness notions and datasets, with in-
structions and documentation on how to do so provided with
the implementation. This is in addition to the pre-processing
and optimization code already available within the frame-
work for the four datasets used in our experiments.

6.7 OUR MODELS

We compare the baselines against two variants of our
MAMO-fair model:

• S-MAMO-fair (Single fairness): the algorithm opti-
mizes for only one notion of fairness at a time;

• M-MAMO-fair (Multi-fairness): the multi-fair
MAMO-fair algorithm, where we have a single
algorithm optimized simultaneously for DDP and
DEO.1

1Code is available at https://github.com/kirtanp/MAMO-fair/

One of the strengths of our approach is that it is model-
agnostic, so it also works with neural networks unlike other
debiasing algorithms (Zafar et al., 2017a,b; Celis et al., 2019;
Lohaus et al., 2020). We demonstrate it by using a feedfor-
ward neural network with 2 hidden layers of sizes 60 and 25
respectively, a ReLu activation function (Xu et al., 2015),
dropout (Srivastava et al., 2014) with p = 0.2 between each
layer, and a sigmoid at the output layer.

6.8 HYPERPARAMETER SELECTION

The most important hyperparameter choice is that of λ in
the fairness objectives (Equation 16). We found that a value
of λ = 0.1 works well for all datasets and both metrics.
We use a batch size of 512 for Adult and Compas, and
200 for Dutch and CelebA. We use a learning rate of 0.01
for all experiments. We did not need to perform automated
hyperparameter tuning of our method to achieve results
comparable to the baselines.

7 RESULTS

We present the results of our experiments for single and
multiple fairness objectives.

7.1 SINGLE FAIRNESS

Figure 2 shows the results for the case of single-fairness.
We see that our algorithm significantly improves on fairness
with a very low loss of accuracy on both fairness metrics.
While traditional models are optimized for a single fairness
notion, we show that when trained on both fairness notions
DDP and DEO simultaneously, our model (M-MAMO-fair)
achieves higher performance on two out of four cases.

Least Loss of Accuracy. First, we see that our algorithm
(S-MAMO-fair) always has the least loss of accuracy among
all the methods. Second, we observe that whenever another
algorithm matches the accuracy achieved by S-MAMO-fair,
our model achieves a better performance on fairness. The
only exception to this among the eight experiments is in
Figure 2a (DEO), where Zafar performs marginally better
than the S-MAMO-fair algorithm with the same loss of
accuracy. In Figure 2c Zafar has a slightly better accuracy
than our methods, but with a much worse fairness value.

Good Trade-off between Error and Fairness. Methods
that have a better performance than S-MAMO-fair on fair-
ness often lose out significantly in the accuracy and end
up being close to the trivial constant model. This is most
clearly seen in results for the Adult and Compas datasets.
For the Dutch and CelebA datasets, all methods perform
well on fairness, but S-MAMO-fair still achieves the best
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Figure 2: Single fairness results. The first and second rows contain the results for the DEO and DPP fairness metric,
respectively. For both axes, a lower value is better. So the closer a point to the origin, the better the method. We emphasize
that for each dataset, M-MAMO-fair is optimized simultaneously for both DDP and DEO. The dotted line shows the
error of the unconstrained model. The closer a point is to the dotted line, the lower is the loss of accuracy suffered by the
corresponding method. We see that our method achieves the best error among all methods while significantly improving
fairness compared to the unconstrained model. The full tables are available in the appendix.

Table 1: Compas: simultaneously for race and gender.

M-MAMO-fair Sum of Losses Unconstrained

HV 0.61 ± 0.01 0.55 ± 0.06 0.34 ± 0.03
SP 0.21 ± 0.09 0.05 ± 0.04 0.02 ± 0.01

accuracy, suggesting that these datasets are easier to debias
than Adult and Compas.

Multi-Fairness Works Well. Interestingly, we note that
our multi-fairness algorithm outperforms single-fairness
baselines in half of the cases. In particular, for the Adult and
CelebA datasets, the M-MAMO-fair algorithm performs
very close to the S-MAMO-fair algorithm and gives a better
accuracy and better fairness than the baseline methods.

Inherent Limitations of Multi-Fairness. For the Com-
pas dataset, M-MAMO-fair performs well for DEO but not
for DDP, which is in line with the impossibility results for
fairness: it is not possible to satisfy DP and error rate based
metrics simultaneously if the base rate of classification is
different for different groups (Corbett-Davies et al., 2017;
Goel et al., 2018). This explains the poor performance of the
M-MAMO-fair algorithm on the Dutch dataset as well as the
fact that it performs well only on DEO and not on DDP for
the Compas dataset. However, this makes multi-objective
algorithms for fairness even more essential, so as to find the
best possible trade-offs between different fairness metrics,
which our algorithm is shown to do well. The parameter λ
in the fairness objective (Equation 16) can be used to control
the trade-off.

Table 2: Adult: simultaneously for race and gender.

M-MAMO-fair Sum of Losses Unconstrained

HV 0.60 ± 0.09 0.30 ± 0.02 0.31 ± 0.05
SP 0.04 ± 0.02 0.02 ± 0.01 0.02 ± 0.01

7.2 MULTI-FAIRNESS

Here we further illustrate the power of the algorithm to
debias simultaneously for multiple sensitive attributes. Two
of the datasets, Compas and Adult, contain both race and
gender as sensitive attributes. For each dataset, we debias
with respect to demographic parity simultaneously for race
and gender. The metrics and baselines are as defined in
Section 6.4 and Section 6.2 respectively. Table 1 and Table 2
show that our method outperforms the baselines on both
metrics.

8 CONCLUSION

In this paper, we addressed the important problem of social
discrimination in machine learning classifiers. We consid-
ered a specific class of debiasing algorithms which looks at
relaxations of fairness notions. We have empirically shown
that existing relaxations do not approximate the true fairness
value well enough.

Motivated by this, we proposed new relaxations which prov-
ably approximate fairness notions better than existing ones.
In addition, we observed that debiasing is a naturally multi-
objective problem, but there is a dearth of research in the



field of multi-objective debiasing algorithms. We have taken
a first step towards alleviating this scarcity by proposing a
model-agnostic multi-objective method for finding fair and
accurate classifiers. We demonstrated through experiments
on four real-world publicly available datasets that our algo-
rithm performs better than current state-of-the-art models
at finding trade-offs between accuracy and fairness. More-
over, it can be used to simultaneously debias for multiple
definitions of fairness and multiple sensitive attributes.
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A TOY DATASET DESCRIPTION

Figure 3 provides a visualization of the toy dataset used in
comparing the relaxations in Figure 1 in the main paper.

Figure 3: A visualization of the toy dataset used in Figure
1 in the main paper. The class labels are (+) and (−). The
color represents group membership for a binary sensitive
attribute, so the two groups are red and blue. So the goal is
to separate the class labels, and remain fair with respect to
the colors. The dataset contains 600 points, but only 400 are
shown for clarity.

Dataset construction: The dataset is taken directly
from (Lohaus et al., 2020). The points are drawn from vari-
ous Gaussian distributions.

• Protected sensitive attribute. We draw 150 points with
a negative label from a Gaussian with mean µ1 =
[2,−1] and covariance Σ1 = [[1, 0], [0, 1]]. For the pos-
itive label we draw 150 points from a mixture of two
Gaussians, with µ2 = [3,−1] and Σ2 = [[1, 0], [0, 1]]
and µ3 = [1, 4] and Σ3 = [[0.5, 0], [0, 0.5]].

• Unprotected sensitive attribute: For the unprotected
sensitive attribute, we draw 150 points with a posi-
tive label from a Gaussian with mean µ4 = [2.5, 2.5]
and covariance Σ4 = [[1, 0], [0, 1]]. For the nega-
tive label we draw 150 points from a Gaussian with
µ5 = [4.5,−1.5] and Σ5 = [[1, 0], [0, 1]].

B MAMO-FAIR ALGORITHM

Here we provide some further details on the multi-objective
algorithm described in Section 5 of the main paper.

Figure 4 gives an intuition for a key ingredient of the multi-
objective algorithm, the common descent vector. Algorithm
1 provides the pseudocode for the algorithm.

C SUPPORTED METRICS

Since the method is based on relaxing the indicator function,
it supports all error-rate based metrics. We formally define

Figure 4: The figure gives an intuitive visualization of the
common descent vector for two objectives. The two sur-
faces can be interpreted as loss functions for two objectives.
The arrow points to the direction that minimizes both loss
functions simultaneously.

Algorithm 1 Final algorithm with gradient normalization

1: for i ∈ 1, ..., k do
2: ELi = `i(w)
3: end for
4: for epoch ∈ 1, ...,M do
5: for batch ∈ 1, ..., B do
6: forward_pass()
7: evaluate_model()
8: for i ∈ 1, ..., n do
9: loss = `i(w)

10: loss_gradient = ∇`i(w)

11: ∇`i(w) = ∇w`i(w)
ELi

12: end for
13: α1, ..., αk =

QCOPSolver
(
∇w`1(w), ...,∇w`k(w)

)
14: ∇wL(w) =

∑k
i=1 αi∇w`i(w)

15: w = w − η∇wL(w)
16: end for
17: end for

some of them here. Table 1 in (Celis et al., 2019) provides an
even more complete list. The Figure 5 defines metrics based
on mis-classification rates of the prediction. We formally
define some of the supported metrics next to give a general
picture.

Definition 7 (False Positive Rate). Parity of false positive
rate

P[ŷ = 1 | a = −1, y = −1] = P[ŷ = 1 | a = 1, y = −1]

Definition 8 (False Negative Rate). Parity of false negative
rate across groups

P[ŷ = −1 | a = −1, y = 1] = P[ŷ = −1 | a = 1, y = 1]

Definition 9 (True Positive Rate). Parity of true positive
rates across groups

P[ŷ = 1 | a = −1, y = 1] = P[ŷ = 1 | a = 1, y = 1]

Definition 10 (True Negative Rate). Parity of true positive
rate across groups

P[ŷ = −1 | a = −1, y = −1] = P[ŷ = −1 | a = 1, y = −1]



Table 3: Results Table: MF1 is the MAMO-fair algorithm optimizing separately for DEO and DDP, and MF2 is the
algorithm optimizing simultaneously for DDP and DEO. SFa is the SearchFair algorith, Zaf is Zafar, Cot is Cotter, Unc is
the unconstrained model and Con is the constant model

Adult Compas

Demographic parity Equality of opportunity Demographic parity Equality of opportunity

|DDP| Error |DEO| Error |DDP| Error |DEO| Error

MF1 0.09 ± 0.03 0.18 ± 0.01 0.05 ± 0.03 0.18 ± 0.01 0.04 ± 0.01 0.32 ± 0.01 0.08 ± 0.04 0.33 ± 0.01
MF2 0.08 ± 0.03 0.19 ± 0.02 0.04 ± 0.02 0.19 ± 0.02 0.11 ± 0.06 0.33 ± 0.01 0.11 ± 0.07 0.33 ± 0.01

SFa 0.00 ± 0.00 0.24 ± 0.00 0.05 ± 0.03 0.20 ± 0.01 0.03 ± 0.01 0.45 ± 0.02 0.01 ± 0.01 0.45 ± 0.01
Zaf 0.20 ± 0.01 0.18 ± 0.00 0.09 ± 0.06 0.20 ± 0.02 0.03 ± 0.01 0.42 ± 0.01 0.21 ± 0.06 0.33 ± 0.02
Cot 0.00 ± 0.00 0.24 ± 0.00 0.06 ± 0.04 0.20 ± 0.01 0.04 ± 0.02 0.40 ± 0.01 0.01 ± 0.01 0.45 ± 0.02
Unc 0.19 ± 0.01 0.17 ± 0.00 0.18 ± 0.03 0.17 ± 0.00 0.20 ± 0.02 0.32 ± 0.01 0.23 ± 0.05 0.32 ± 0.03
Con 0.00 ± 0.00 0.24 ± 0.00 0.00 ± 0.00 0.24 ± 0.00 0.00 ± 0.00 0.46 ± 0.01 0.00 ± 0.00 0.46 ± 0.01

Table 4: Results Table: MF1 is the MAMO-fair algorithm optimizing separately for DEO and DDP, and MF2 is the
algorithm optimizing simultaneously for DDP and DEO. SFa is the SearchFair algorith, Zaf is Zafar, Cot is Cotter, Unc is
the unconstrained model and Con is the constant model

Dutch CelebA

Demographic parity Equality of opportunity Demographic parity Equality of opportunity

|DDP| Error |DEO| Error |DDP| Error |DEO| Error

MF1 0.08 ± 0.03 0.19 ± 0.01 0.03 ± 0.01 0.18 ± 0.00 0.06 ± 0.02 0.16 ± 0.01 0.06 ± 0.02 0.15 ± 0.03
MF2 0.14 ± 0.01 0.19 ± 0.00 0.08 ± 0.02 0.19 ± 0.00 0.04 ± 0.01 0.16 ± 0.00 0.01 ± 0.01 0.16 ± 0.00

SFa 0.02 ± 0.01 0.23 ± 0.00 0.01 ± 0.00 0.18 ± 0.00 0.01 ± 0.01 0.17 ± 0.00 0.01 ± 0.01 0.17 ± 0.00
Zaf 0.03 ± 0.01 0.23 ± 0.00 0.01 ± 0.01 0.18 ± 0.00 0.17 ± 0.01 0.15 ± 0.00 0.16 ± 0.01 0.15 ± 0.00
Cot 0.01 ± 0.01 0.25 ± 0.01 0.00 ± 0.00 0.19 ± 0.00 0.01 ± 0.01 0.18 ± 0.00 0.03 ± 0.01 0.16 ± 0.00
Unc 0.16 ± 0.01 0.18 ± 0.01 0.08 ± 0.01 0.18 ± 0.01 0.20 ± 0.01 0.15 ± 0.00 0.16 ± 0.01 0.15 ± 0.00
Con 0.00 ± 0.00 0.48 ± 0.00 0.00 ± 0.00 0.48 ± 0.00 0.00 ± 0.00 0.48 ± 0.00 0.00 ± 0.00 0.48 ± 0.00

Figure 5: Table from Zafar et al. (2017a) on disparate mis-
treatment based measures. The table defines the rates, the
measure of fairness corresponding to each rate is the parity
of that rate across groups

The relaxation procedure follows the same principle as de-
scribed in the main content, where each fairness notion is
written as a difference of expectation, further relaxed to an
empirical estimate of the expectation. As a last step 1x>0

is relaxed to tanh(c ∗ max(0, x)) and 1x<0 is relaxed to

tanh(c ∗ min(0, x)). Since we are using the relaxation to
define a loss function for each measure of fairness, we have
access to both y and ŷ while calculating the loss value.
Therefore the method would also work for metrics such as
the false discovery rate, where we condition on the predicted
value.

D IMPLEMENTATION DETAILS

Design choice of the experiments: The choice of using
10, 000 samples for training was to follow as closely as
possible the experimental design of Lohaus et al. (2020)
to make sure that the comparison is sound. They use this
choice of sampling for their method and all the baselines,
and we follow the same procedure. This choice means that
we are using significantly less than 70% of the samples for
training, and all the rest for testing. The performance can
only be expected to improve when we increase the training
proportion and decrease the testing proportion of the dataset.
This justifies the choice of 10, 000 samples even in datasets



with many more points (such as celebA).

Computational resources: All experiments were run on
an ordinary laptop (16GB RAM and no GPU). Computa-
tional clusters were not used.

E RESULT TABLES

Table 3 and Table 4 provide full tables for the results de-
scribed in Figure 2 in the main paper. We note that in a few
cases both the error and fairness value are identical for more
than one baseline method. In this case we slightly perturb
one of the values to ensure that all points are visible in the
figure in the main paper. The tables in this appendix provide
the values without this perturbation.

F PROOF OF THEOREM 1

Here we provide the proof of Theorem 1 from the main
paper. First we give a reminder of the definition of the sign
function

sign(x) =


1 if x > 0

−1 if x < 0

0 if x = 0

(19)

Observation 1. The hyperbolic tangent is an odd function,
which is to say that

tanh(−x) = − tanh(x)

Observation 2 (The quotient law of convergent series). Let
(an) and (bn) be convergent series such that limn→∞ an =
A and limn→∞ bn = B. Then we have

lim
n→∞

an
bn

=
limn→∞ an
limn→∞ bn

=
A

B

provided that B 6= 0.

Observation 2 is a commonly used result in real analysis.
See Theorem C in (Freiwald, 2014) for a proof.

Theorem 2. The hyperbolic tangent of n ∗ x converges to
the sign of x for every fixed x ∈ R as n goes to infinity.
Formally,

lim
n→∞

tanh(nx) = sign(x)∀x ∈ R (20)

Proof. We know from the definition of the hyperbolic tan-
gent function that

tanh(nx) =
1− e−2nx
1 + e−2nx

(21)

The theorem requires pointwise convergence, meaning that
the convergence in n should hold for each value of x. There-
fore x can be though of as a constant for the purpose of the
proof. Assuming x to be a constant let an = 1− e−2nx and
bn = 1 + e−2nx. Then we have

tanh(nx) =
an
bn

(22)

We divide into cases by the value of x.

Case 1: x > 0. In this case we have limn→∞ e−2nx =
0. Therefore it follows that limn→∞ an = 1 and
limn→∞ bn = 1. From Equation 22 we know that tanh(nx)
is a ratio of an and bn. Therefore it follows from Observa-
tion 2 that

lim
n→∞

tanh(nx) =
limn→∞ an
limn→∞ bn

= 1

Case 2: x < 0. Since x < 0, we have −x > 0. There-
fore from case 1 we know limn→∞ tanh(n(−x)) = 1. We
have from Observation 1 that tanh(−nx) = − tanh(nx).
Therefore,

lim
n→∞

tanh(nx) = − lim
n→∞

tanh(n(−x)) = −1

Case 3: tanh(nx) = 0 for x = 0. Therefore

lim
n→∞

tanh(nx) = 0

Putting the three cases together we have

tanh(nx) =


1 if x > 0

−1 if x < 0

0 if x = 0

This is identical to the definition of the sign function (Equa-
tion 19. Therefore,

lim
n→∞

tanh(nx) = sign(x)∀x ∈ R

G PROOF OF LEMMA 1

Lemma 2. tanh(n ∗max(0, x)) converges to the indicator
function of x > 0 as n goes to infinity. Formally,

lim
n→∞

tanh(n ∗max(0, x)) = 1x>0 ∀x ∈ R (23)

Proof. We know from Theorem 1 that

lim
n→∞

tanh(n ∗max(0, x)) = sign(max(0, x)) (24)



Case 1: x > 0. When x > 0, max(0, x) = x.
Therefore we have sign(max(0, x)) = sign(x) = 1. So
sign(max(0, x)) = 1 when x > 0.

Case 2: x ≤ 0. When x ≤ 0, max(0, x) = 0 and there-
fore sign(max(0, x)) = 0.

So we have that sign(max(0, x)) = 0 for x ≤ 0 and
sign(max(0, x)) = 1 for x > 0. But this is by def-
inition the indicator function of x > 0, 1x>0. Hence,
sign(max(0, x)) = 1x>0 and we can conclude that
limn→∞ tanh(n ∗max(0, x)) = 1x>0.


	Introduction
	Related Work
	Background
	Fairness Relaxations

	A Novel Fairness Relaxation
	The MAMO-fair Algorithm
	Experiments
	Datasets
	Baselines
	Objectives
	Metrics
	Solution Selection
	Optimization Framework
	Our Models
	Hyperparameter Selection

	Results
	Single Fairness
	Multi-Fairness

	Conclusion
	Toy dataset description
	MAMO-fair algorithm
	Supported Metrics
	Implementation details
	Result Tables
	Proof of Theorem 1
	Proof of Lemma 1

