US 20240273125A1
a9y United States

a2y Patent Application Publication o) Pub. No.: US 2024/0273125 A1l

FUSCO et al. 43) Pub. Date: Aug. 15, 2024
(54) UPDATING WINDOW REPRESENTATIONS Publication Classification
OF SLIDING WINDOW OF TEXT USING (51) Int. Cl
ROLLING SCHEME GOGF 16/33 (2006.01)
GOG6F 16/35 2006.01
(71) Applicant: International Business Machines ()
C i ok NY (US (52) US. CL
orporation, Amonk, NY (US) CPC ... GOGF 16/3346 (2019.01); GOGF 16/353
(72) Inventors: Francesco FUSCO, Ziirich (CH); (2019.01)
Diego Matteo ANTOGNINI, 7 ABSTRACT
Ruvigliana (CH) An example system includes a processor to compute a

token-level fingerprint for each of a number of tokens in a

received window of text. The processor can compute a
(21) Appl. No.: 18/166,681 window representation for a window of text based on the

token-level fingerprints. The processor can also update the

window representation in a rolling scheme when sliding the
(22) Filed: Feb. 9, 2023 window of text.

100~
COMPUTER 101

PROCESSOR SET 110
| PROCESSING CIRCUITRY 120 | | CACHE 121 |

| COMMUNICATION FABRIC 111 |

[VOLATILE MEMORY 112 |
PERSISTENT STORAGE 11

|OPERATING SYSTEM 122|

FUZZY AND SEMANTIC TEXT
SEARCH MODULE
200
PERIPHERAL DEVICE SET 114
| UIDEVICESET 123 | [STORAGE 124 | |loT SENSOR SET 125 |

2l NETWORK MODULE 115 |

END USER DEVICE 103 |

REMOTE SERVER 104
REMOTE DATABASE 130

PRIVATECLOUD 106 |

GATEWAY 140 |

PUBLIC CLOUD 105
[CLOUD ORCHESTRATION MODULE 141| [HOST PHYSICAL MACHINE SET 142 |

| VIRTUAL MACHINE SET 143 | | CONTAINERSET 144 |

Patent Application Publication Aug. 15,2024 Sheet 1 of 15 US 2024/0273125 A1

100\‘
COMPUTER 101

PROCESSOR SET 110
PROCESSING CIRCUITRY 120 CACHE 121

COMMUNICATION FABRIC 111

VOLATILE MEMORY 11

PERSISTENT STORAGE 11

OPERATING SYSTEM 122

FUZZY AND SEMANTIC TEXT
SEARCH MODULE
200
PERIPHERAL DEVICE SET 114
UI'DEVICE SET 123 STORAGE 124 loT SENSOR SET 125

NETWORK MODULE 11

END USER DEVICE 103

REMOTE SERVER 104
WAN 102 REMOTE DATABASE 130

PRIVATE CLOUD 106

1
Y

GATEWAY 140 PUBLIC CLOUD 105

CLOUD ORCHESTRATION MODULE 141 [HOST PHYSICAL MACHINE SET 142

VIRTUAL MACHINE SET 143 CONTAINER SET 144

FIG. 1

Patent Application Publication Aug. 15,2024 Sheet 2 of 15 US 2024/0273125 A1

FUZZY AND 000
2011 SEMANTIC TEXT ¥
SEARCH MODULE

204 LSH FINGERPRINT 206
PRE.COMPUTER |k
207-"1.PROCESSOR — SUB-MODULE

TOKEN-LEVEL //‘208
FINGERPRINT COMPUTER |
SUB-MODULE

WINDOW 210
REPRESENTATION L
COMPUTER SUB-MODULE

WINDOW 912
REPRESENTATION | L
UPDATER SUB-MODULE

DENSE 214
REPRESENTATION | L/
GENERATOR SUB-MODULE

FUZZY MATCHING 216
AND SEMANTIC =
SEARCH SUB-MODULE

FIG. 2

Patent Application Publication Aug. 15,2024 Sheet 3 of 15 US 2024/0273125 A1

PRECOMPUTE LSH FINGERPRINTS FOR SUBWORD UNITS | 302
BELONGING TO VOCABULARY OF SUBWORD-UNIT TOKENIZER

i
COMPUTE TOKEN-LEVEL FINGERPRINT FOR EACH TOKEN IN | ~304
RECEIVED WINDOW OF TEXT

i
COMPUTE WINDOW REPRESENTATION FOR WINDOW OF TEXT | ~306
BASED ON TOKEN-LEVEL FINGERPRINTS

r
UPDATE WINDOW REPRESENTATION IN ROLLING SCHEME | ~308
WHEN SLIDING WINDOW OF TEXT

300

FIG. 3

Patent Application Publication Aug. 15,2024 Sheet 4 of 15 US 2024/0273125 A1

[RECEIVE TEXT QUERY AND DOCUMENT TOBE QUERIED P *2

COMPUTE WORD FINGERPRINTS FOR EACH WORD IN TEXT QUERY 404
AND WINDOW OF TEXT IN DOCUMENT BASED ON PRECOMPUTED |~
LSH FINGERPRINTS

COMPUTE WINDOW REPRESENTATION FOR WINDOW OF TEXT AND | ~406
QUERY REPRESENTATION BASED ON WORD FINGERPRINTS

EXECUTE FUZZY COMPARISON BETWEEN WINDOW | ~408
REPRESENTATION AND QUERY REPRESENTATION

_| SLIDE SLIDING WINDOW OF TEXT IN DOCUMENT AND UPDATE | ~410
WINDOW REPRESENTATION

EXECUTE FUZZY COMPARISON BETWEEN UPDATED WINDOW | ~412
REPRESENTATION AND QUERY REPRESENTATION

OUTPUT RESULTS OF FUZZY MATCHING 416

400

FIG. 4

Patent Application Publication Aug. 15,2024 Sheet S of 15 US 2024/0273125 A1

[RECEIVE TEXT QUERY AND DOCUMENT TO BE QUERED 4%

COMPUTE WORD FINGERPRINTS FOR EACH WORD IN TEXT QUERY 404
AND WINDOW OF TEXT IN DOCUMENT BASED ON PRECOMPUTED |~
LSH FINGERPRINTS

COMPUTE WINDOW REPRESENTATION FOR WINDOW OF TEXT AND | ~406
QUERY REPRESENTATION BASED ON WORD FINGERPRINTS

GENERATE DENSE REPRESENTATIONS OF WINDOW | 502
REPRESENTATION AND QUERY REPRESENTATION

EXECUTE SEMANTIC COMPARISON BETWEEN DENSE 504
REPRESENTATIONS OF WINDOW REPRESENTATION AND QUERY |~
REPRESENTATION

SLIDE WINDOW OF TEXT IN DOCUMENT AND UPDATE WINDOW | ~410
REPRESENTATION

GENERATE UPDATED DENSE REPRESENTATION OF UPDATED | ~506
WINDOW REPRESENTATION

EXECUTE SEMANTIC COMPARISON BETWEEN UPDATED DENSE

REPRESENTATION OF WINDOW REPRESENTATION 508
AND DENSE REPRESENTATION OF QUERY REPRESENTATION
END
NO " oF DOCUMENT?
OUTPUT RESULTS OF SEMANTIC SEARCH |-510

500

FIG. 5

US 2024/0273125 Al

Aug. 15, 2024 Sheet 6 of 15

Patent Application Publication

9914

009

wzji.o_mm.o_____ﬁ_o_mm.o_t|_ 71300W @3SVYE-NOILOIrONd T|,,_N_8_o

[4VLS[INO[SVH[WILSAS] aviosl 09

S
RS
S

\\\
-
o
-

029~

\
AN TETE

019

! \ A
rl9 N_‘oj
[12°0[G6°0—] T3AON A3SVE-NOILOArOdd |=— G[zl{ 0[S |}
’
719

LY
[}
\
\
\

Y
A
LY

|""[anv [LOH[SI[NNS mT_:/g@

-

J

/\
909

Patent Application Publication Aug. 15,2024 Sheet 7 of 15 US 2024/0273125 A1

706A

p ho hf hy hs

704A~ [:man /,{ Bri {11 |29 81|19
7048~ {Bring \=' fin 54 | 31| 44| 26 | 708

704C P R e

Tking J | Y ing 38| 78| 67| 78
704D~ faing | | 7068 736(3 @ @ @ @,710
11244 19| 712

700

US 2024/0273125 Al

Aug. 15, 2024 Sheet 8 of 15

Patent Application Publication

8 Ol
008
0) [0 [L[]0
[N -
808 e | |er | 1
0902
908 \ 890/
- | b | e L] bur K
I I I I I I I /
- []) e 0L]o0 w <
e ran Lo ug w\
708 208 ¢
708 208 e

~—-ay0.
—0v0.
—-av0.

_f<vom

US 2024/0273125 Al

Aug. 15, 2024 Sheet 9 of 15

Patent Application Publication

6 Old
006
ag6
ol L | v | L |0 My ;,x%
N[z o v o]yl]
ag06 : \\w&uoom
06| €16 | 8 W[s H]-avos
a6l L v | s | g |}uluns
! ;/(m@oa
1n0| ¢ | 9 ¢ | ¢ulayy
V806 -+ deisewi] \
v906
\
4206

VOI6| L | ¥ |2 My
o@om*
L N
7806| € | 6 | 8 LHy| sl
ag806| L | ¥ | ¢ hy| uns N
I I
c |9z | eyl _
V306 1 doisawi| ’
V906
\
V206

V106
d906

Patent Application Publication Aug. 15, 2024 Sheet 10 of 15 US 2024/0273125 Al

906A 1002A 1004A
-/ Timestep t Histograms
The |h 1 0 - - -1 11 -1
906B‘£L Ie t11 0 1 O 1 +
904 A sun |hy 1 1 1 0 -+ H |+ 1
s et O] 1] 0] 0 T IRV IR
l\
906C
41+ |+ -3 [1006A
1 i
hy 1 1] o |1008A
Fingerprint
\
906A 10028 10048
/ Timestep t+1 Histograms
The |h 1 0 - 1 1 1 |OUT
goepd LoeMt2 | 01 91 11 9= 1] 1] 1]") hd
sunjheq | 1|1 1] O T 1] 1]
9048</ is Jhy | 0| 1]0]0 A 1] 1]
OCT Thot et T 1 0] 1 =l 1|+ | 1] A |IN
906D +1 | +3] -1 -1 [1006B
X I I
w+1”171 1 | 0] 0 |1008B
Fingerprint

1000

FIG. 10

Patent Application Publication Aug. 15, 2024 Sheet 11 of 15 US 2024/0273125 Al

1104A 11048 1104C 1104D 1104E
Jo g g)

1102 a Huffman code IS one
1106A 1106B 1106C 1106D 1106E
/ A > >
6 16 7 2 9
1 14 3 15 8
12 2 1 5 6
8 11 7 8 4
"
Window 1 1108A ™\ 1108B
Window 2
6
1 Counting Bloom Filters
1110A~| .. 3
2
5 =1 | b1 [Tl i
3 12345678 910111213141516
1M10B~| .. | 1114 1112A
1 % o "".\:-‘ —
A ia |5 — i
1 2‘3:\\\4 567 8 910111213141516
16 11128

Patent Application Publication Aug. 15, 2024 Sheet 12 of 15 US 2024/0273125 Al

1502 1206
Counting Bloom Filters Z
_ Dense Representations
Window ... ,
3 Window 2 —~0.55[0.21] ... [0.05]0.01 JJ
2
il I i
12345678910 111213141516
5 Window 1 —| Projection N _ 1204
2
3 [T : I
1234567891011 1213 141516

Dense Representations 1 306

Query Matrix Distances

Window 1 1{0.55]0.21| - |0.05/0.01 017} - 10.31
0.34(- 1004 |0.21| - |0.44
Window 2 110.33{0.12| - {03504 * [| - | = |=(0.82| -+ |0.22

0171 - 10.41
Window ... 0.15] - 1012

-
N
—
N

-
lm
—
(]

Batch matrix multiplication1208

1200

FIG. 12

Patent Application Publication Aug. 15, 2024 Sheet 13 of 15 US 2024/0273125 Al

SimGet

Datasets:

arxiv_merged_cbf.bin (none, words=503705, vocab_size=50.705) v

1302 Keywords:

graph_neural_network

Clustering:

kmeans v

k=5

Cluster

Toggle table

Search
Word S |Word ID%|Score % |Count £|Class IDS
1304 graph_neural_networks 185401 |97 0 0
—— |deep_graph_neural_network 98376 94 0 0
deep_graph_neural_networks 098377 |93 0 0
graph_convolution_neural_network 185172 |92 0 0
graph_convolution_neural_networks |185173 | 91 0 0
network_graph 293178 |90 0 0
graph_network 185392 |90 0 0
graphena_network 185738 |90 0 0
graph_convolutional_neural_network |185183 | 90 0 0
network_graphs 293179 |89 0 0
graph_convolutional_neural_networks | 185184 | 89 0 0
graph_networks 185393 |89 0 0
graph_neural_network_model 185399 |88 0 0
hierarchical_graph_neural_network | 194062 | 88 0 0
novel_graph_neural_network 303159 |87 0 0
graph_neural_network_framework 185398 |87 0 0
graph_neural_network_models 185400 |85 0 0
1300

FIG. 13

US 2024/0273125 Al

Aug. 15,2024 Sheet 14 of 15

Patent Application Publication

Vil Ol

voorl
'$1950dW 09 JBY)0 [BIBABS pue UYosS|apusy ‘pwwny ‘uidoyn ‘yoeg Aq syiom pafeid ose s 7260
‘S|eyioas oueld pue suaou0d ajow Auew pakeid ay ssejpyueAsN Z6°0
‘diey 1o} BJeuos B pue ‘0Isnuu paloes ‘Seouewos SNoJBWNU ‘Sesado [elaAds papnjoul suoisodwod siIH -+ €6°0
SO0UBJUBS JBJIIS JSOW ¥-d0| WIS 8uIS0)
'$9210} [BASBYDIO IO} SHIOM LIB2U0D BWIOS 8)0IM OS|e 8H amso\/
a¢0rl
' JIN, Jo Ajddnsai jeoisiBol e papnjoul pue gejeoeds pautes uoissiw syl /80
usladxe (|1-X34VYS) [I-usuadx3 olpey nsjewy snys ey} yim Buoje gejsoeds ypim
suoneBnsaAul 8oUBI0S BY| UBISSNY/SM Juiol 11GJ0-UO SNOLEBA PBjonpuod SMald UOIE)S pue apinyg sy} Jeyebo]l /80
‘9)I||91ES 1S9} B U)IM PasnoAzapusl
pue a)je1es (Juswiuadx3 euusuy s|gelepu]) 3v1//0z-ueueds ay) parsuial pue pafojdep osje uoissiw eyl 68°0
SO0UBJUBS JeJILLIS JSOoW ¥-d0| WIS 8uIS0)
V1S Jo ‘ersydsowy Jo) 8d0oss|9] Jejewoi)oads palesu
oluabohin sy} Jo |easL)al pue JuswAojdap papnjoul UoISSIW 8y} ‘suonebseAul £0-SY 1LY Ui 0} uonippe U amso\/
acovl
*JI8qWINN Sy9 Jo aweu
[eolwayo AQ yoleas ay) BuLisyo 8lISgem e 10 1SI| [eaIWBYD (89X LJOSOIOIN e Ul Buiyosess AQ Sy} op uea s1esn) 980
"4yo.Jess ay) 0) Aoeanud
Buipinoad sny) pauenb sauibus yoseas sy} Wol) SSaIppe d| SJ8yoJess sy} aply osje ued auibus yolesselsWwy 88°0
‘salanb aulbus yotess 9)6005) Jo S)Nsal 8y} U0 PaSE] 8JBYSPUIW JO 8INSEaW B S| 8.eysa|foos 680
SO0UBJUBS JBJILUIS JSOW %-d0| WIS 8uIS0)
'S}nsal UMO S} 8onpoud 0) sulbus yoless
gom B JO BJep 8y} Sasn Jey) |00 [eABLI)S. UONRWIOU| 8uljuo ue si (Joyebaibbe yoiess 10) suibus yoseaselsw y amso\/
Yoyl

US 2024/0273125 Al

Aug. 15, 2024 Sheet 15 of 15

Patent Application Publication

gyl Ol

00wl

*sBuIpjoy SII 10 J[eY UeY) 810w 0} aBewEep pue uonoNISep PaIaYNS SSAIYJIR 8y} “JeAN [IAID) NesSSIg-eauIne) sy Buung
"BUIYOOPU| InoyBnoay) s1oedul Jofew pey Jey) SJUSAS SNOJSWINU POAJOAUI J|9SI Jem 8y |

"9SIOM SISLIO BY} apew Jl pue ‘uonon.sap Jeald passyns Ao ay) sdooss s,uosjoden isulebe sem souspuadepul sy} bulng

080
18°0
18°0

SO0UBJUBS JBJILUIS JSOW ¥-00] WIS 8UIS0Y)

'SUBZI)IO 8S8WRUBIA YLON 40} Jnoiyip sJow oy Buyew
‘ainjonJiseliur Jo sjunowe Juediiubls pakonsap sspuny | Buijjoy uonessd) ubiedwed Buiqwog ay; ‘Jejnoied uj

'S804 jeuonippe wuopad pue siouqiyul asesjold yiog ale suidias swos

‘sejoAJey0ld ul painquisip Ajjeaipelods aie ssush uidies pajolpald

'S)SB|q0IQI} US8I0) Uewny pue

sejhooJ)se uelewwew [ejeuocau ul ajdwexs 1o} ‘aseyd © ul uoissaibold 8joAd |j80 8ZIUCIYOUAS pue JSauie 0)
UMOYS Us8aq Sey - Sjusliynu s)i pue wnias ay) buinowsal Aj8}e|dwoo 1o Ajjlenled - uoijeAudap wnias jo 8sn ay|

INEN Ty ~
32071
680
68°0

16°0

SO0UBJUBS JBJIIS JSOW ¥-00] WIS 8uIS0D)

JS0y Jiey} U suonouny asesjold 1dnisip 0} suidias asn $asnuIA aWos

INEiTy)

5

acorit

US 2024/0273125 Al

UPDATING WINDOW REPRESENTATIONS
OF SLIDING WINDOW OF TEXT USING
ROLLING SCHEME

BACKGROUND

[0001] The present techniques relate to computing repre-
sentations of text. More specifically, the techniques relate to
computing representations of text using a sliding window.

SUMMARY

[0002] According to an embodiment described herein, a
system can include processor to compute a token-level
fingerprint for each of a number of tokens in a received
window of text. The processor can also further compute a
window representation for a window of text based on the
token-level fingerprints. The processor can also update the
window representation in a rolling scheme when sliding the
window of text.

[0003] According to another embodiment described
herein, a method can include computing, via a processor, a
token-level fingerprint for each of a number of tokens in a
received window of text. The method can further include
computing, via the processor, a window representation for a
window of text based on the token-level fingerprints. The
method can also further include updating, via the processor,
the window representation in a rolling scheme when sliding
the window of text.

[0004] According to another embodiment described
herein, a computer program product for computing window
representations of text can include computer-readable stor-
age medium having program code embodied therewith. The
program code executable by a processor to cause the pro-
cessor to compute a token-level fingerprint for each of a
number of tokens in a received window of text. The program
code can also cause the processor to compute a window
representation for a window of text based on the token-level
fingerprints. The program code can also cause the processor
to update the window representation in a rolling scheme
when sliding the window of text.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0005] FIG.1 is a block diagram of an example computing
environment that contains an example of an environment for
the execution of at least some of the computer code involved
in performing the inventive methods, such as a fuzzy and
semantic text search module;

[0006] FIG. 2 is an example tangible, non-transitory com-
puter-readable medium that can execute fuzzy and semantic
text search over a sliding window of text;

[0007] FIG. 3 is a process flow diagram of an example
method that can compute window representations over a
sliding window of text without hash computation over the
full-text;

[0008] FIG. 4 is a process flow diagram of an example
method that can perform fuzzy matching using updated
window representations over a sliding window of text;

[0009] FIG. 5 is a process flow diagram of an example
method that can perform semantic matching using updated
window representations over a sliding window of text;

Aug. 15,2024

[0010] FIG. 6 is a block diagram of an example system for
executing a fuzzy and semantic text search based on a shared
text representation, according to embodiments described
herein;

[0011] FIG. 7 is a block diagram of an example system for
computing a MinHash fingerprint, for subword units,
according to embodiments herein;

[0012] FIG. 8 is a block diagram of an example system for
computing a SimHash fingerprint for subword units, accord-
ing to embodiments herein;

[0013] FIG. 9 is a block diagram of an example system for
computing a sliding window representation using MinHash;
[0014] FIG. 10 is a block diagram of an example system
for computing a sliding window representation using
SimHash;

[0015] FIG. 11 is a block diagram of an example system
for populating a counting bloom filter (CBF) for a first
window and sliding the window to the next one, according
to embodiments described herein;

[0016] FIG. 12 is a block diagram of an example system
for efficiently calculating distances for a number of sliding
window dense representations using batch matrix multipli-
cation;

[0017] FIG. 13 is a screenshot of an example results of a
fuzzy matching executed according to embodiments
described herein; and

[0018] FIGS. 14A and 14B are tables of example results of
a semantic similarity executed according to embodiments
described herein.

DETAILED DESCRIPTION

[0019] Modern language models use special tokenization
techniques which have been introduced to represent the text
with a finite, known a-priori, and usually limited in size set
of subword units. The idea of tokenizers is to train a
vocabulary of subword units that can be used composition-
ally to encode any text. For example, a tokenizer trained on
general-domain corpora would encode the word “paraceta-
mol” into [“para”, “ce”, “tam”, “ol”]. In practice, subword
unit tokenization algorithms have solved the problem of
out-of-vocabulary words, as every token can be expressed as
a combination of tokens belonging to a vocabulary. In fact,
those techniques have been introduced to reduce the vocabu-
lary size for embeddings stored in large language models.
However, while subword-unit tokenizers substantially
reduce the vocabulary size of language models, storing
embedding matrices for the subword unit vocabularies may
still require significant use of space in memory. For example,
approximately 120 megabytes may be used for a large BERT
model.

[0020] According to embodiments of the present disclo-
sure, a system includes a processor that can compute a
token-level fingerprint for each of a number of tokens in a
received window of text. The processor can also compute a
window representation for a window of text based on the
token-level fingerprints. The processor can then update the
window representation in a rolling scheme when sliding the
window of text. Thus, embodiments of the present disclo-
sure may thus be used to implement fuzzy matching and
semantic searches using a sliding window approach. In
various examples, given a query as input, the embodiments
described herein enable retrieval of all occurrences of text
that is similar at the surface level or at the semantic level, or
both. In some embodiments, the embodiments further

US 2024/0273125 Al

include natural language processing means, such as projec-
tion-based models, and combines them with well-known
locality-sensitive hashing (LSH) techniques, such as Min-
Hash and SimHash, to provide an improved search experi-
ence.

[0021] LSH is a technique commonly used for clustering.
LSH can be seen as an online clustering method that allows
elements that are close to each other according to a metric
to fall in the same clustering bucket with high probability.
For example, the metric may be a Jaccard similarity metric.
The embodiments described herein use MinHash and
SimHash to implement an efficient sliding window approach
which resembles rolling hashes. Rolling hashes are some-
times used to perform exact string matching over a text using
a rolling window. The size of the window has the same size,
in characters, of the text to be searched for (i.e., the input
text). To search for the input text, one can compute the hash
value of the input text, and then compare the input text with
the hash value h, of the first n-character window w, of the
corpus. To find all the potential matches, one has to slide the
text window by one character and repeat the process till the
end of the corpus. To make the search across the entire
corpus efficient, some algorithms use Rabin’s fingerprints,
which allows the hash value h, corresponding the n char-
acter-long window w, of the corpus (i.e., ¢y, ..., c,,) to be
computed by updating h, with the removed character in
position 0 (i.e., ¢,) and the added character in position n+1
(ie., c,,) instead of computing the n hashes. The embodi-
ments described herein are in practice a rolling approach, but
instead of using Rabin’s fingerprints as the representation of
the text, the embodiments described herein use LSH finger-
prints, such as MinHash fingerprints. In practice, any LSH
method for text can be used as long as the operation is
associative and allows to update the data structure efficiently
when rolling windows. Additionally, instead of working at
the character level, our approach works at the subword-unit
levels: the window iterates over the corpus by one or more
subword units at the time. In various embodiments, a
combination of MinHash and SimHash with subword-unit
tokenizers are thus used to implement a rolling hashing
mechanism without using hash functions over strings at
runtime. In contrast with traditional rolling hashes, the
embodiments described herein use representations that can
be used as input for projection-based model. This way, we
can extract a text representation that can be used as it is to
implement fuzzy matching, or used as input for projection-
based models to implement semantic matching. The
embodiments thus enable implementation of fuzzy matching
and semantic searches using a sliding window approach.
Given the text query as input, the embodiments enable to
retrieve all occurrences of text that is similar at the surface
level or at the semantic level, or both. Compared to existing
approaches, our method combines both searches in a unified
setup and enables totally new search experiences. The
method can be used as a replacement for real-time search
tools, but has numerous applications ranging from question
answering (QA), high-speed indexing, and information
retrieval.

[0022] For example, the embodiments enable selective
creation of embeddings for a term. In particular, implement-
ing semantic search via dense representation is highly desir-
able but extremely expensive to offer to users due to the
infrastructure costs required to implement nearest neighbor
searches over billion of statements. For platforms targeting

Aug. 15,2024

customers in multiple and diverse domains, it is also impor-
tant to keep the infrastructure costs low while serving
specific needs. In this regard, the embodiments herein enable
the high-speed creation of indexes for morphology search,
which can be used to selectively drive the creation dense
representation. In fact, morphology search via sparse repre-
sentations, such as the CBF or the SimHash fingerprint
described herein, has a lower memory and disk footprint
compared to dense representations. In various examples,
those morphology representations can be stored for all terms
in the corpora and then selectively decide for which terms
keeping a dense representation would be beneficial to
improve the recall of the searches.

[0023] Moreover, the embodiments herein enable selec-
tive ingestion strategies for large corpora. For example, the
embodiments provide significant flexibility at ingestion time
to select which part of large corpora could be of interest of
a specific customer use case. By providing queries as input
to the embodiments described herein, a decision can be
made as to which documents for a given corpora need to be
indexed with full-text indices or annotated with domain-
specific annotators.

[0024] Furthermore, the embodiments herein enable cold-
storage for semantic indexing. As mentioned before, the
morphology representations require substantially less space
than dense representation and, in addition, they are easier to
compress with standard compression tools. In this regard,
the embodiments herein can be used to have systems offer-
ing a pause and resume functionality. In fact, using embodi-
ments described herein, a system can be frozen together with
the morphology indices, eventually compressed with stan-
dard tools to save resources, and maintained in storage
systems for cold storage. The dense representations, which
are larger in size and hard to compress, can thus be simply
thrown away and rebuilt on-the-fly from the morphology
representation when the system is resumed.

[0025] Finally, the embodiments herein also enable unsu-
pervised document tagging. In particular, automatically
associating a disjoint set of key phrases and keywords to
paragraphs or documents enables faster and more accurate
search in a large collection of texts. The embodiments
described herein can be used to assign informative and
diverse keywords by leveraging altogether a counting bloom
filter (CBF) for MinHash, or the histogram obtained with the
SimHash approach, and the dense representation resulting
from the projection. More specifically, as one example,
given a document, a processor can encode each sentence
using both representations and average them to create two
document-level embeddings. Assuming a database of mul-
tiword expressions, the processor can compute the similarity
of the dual document-level representation with the ones in
database using the counting bloom filter/histogram and the
dense representation, enabling fuzzy and semantic match-
ing. Therefore, the resulting tags are likely informative and
diverse because they combine words and multiword expres-
sions that are morphologically similar to the ones of the
query document, and also have similar semantics.

[0026] Various aspects of the present disclosure are
described by narrative text, flowcharts, block diagrams of
computer systems and/or block diagrams of the machine
logic included in computer program product (CPP) embodi-
ments. With respect to any flowcharts, depending upon the
technology involved, the operations can be performed in a
different order than what is shown in a given flowchart. For

US 2024/0273125 Al

example, again depending upon the technology involved,
two operations shown in successive flowchart blocks may be
performed in reverse order, as a single integrated step,
concurrently, or in a manner at least partially overlapping in
time.

[0027] A computer program product embodiment (“CPP
embodiment” or “CPP”) is a term used in the present
disclosure to describe any set of one, or more, storage media
(also called “mediums”) collectively included in a set of one,
or more, storage devices that collectively include machine
readable code corresponding to instructions and/or data for
performing computer operations specified in a given CPP
claim. A “storage device” is any tangible device that can
retain and store instructions for use by a computer processor.
Without limitation, the computer readable storage medium
may be an electronic storage medium, a magnetic storage
medium, an optical storage medium, an electromagnetic
storage medium, a semiconductor storage medium, a
mechanical storage medium, or any suitable combination of
the foregoing. Some known types of storage devices that
include these mediums include: diskette, hard disk, random
access memory (RAM), read-only memory (ROM), erasable
programmable read-only memory (EPROM or Flash
memory), static random access memory (SRAM), compact
disc read-only memory (CD-ROM), digital versatile disk
(DVD), memory stick, floppy disk, mechanically encoded
device (such as punch cards or pits/lands formed in a major
surface of a disc) or any suitable combination of the fore-
going. A computer readable storage medium, as that term is
used in the present disclosure, is not to be construed as
storage in the form of transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide,
light pulses passing through a fiber optic cable, electrical
signals communicated through a wire, and/or other trans-
mission media. As will be understood by those of skill in the
art, data is typically moved at some occasional points in time
during normal operations of a storage device, such as during
access, de-fragmentation or garbage collection, but this does
not render the storage device as transitory because the data
is not transitory while it is stored.

[0028] Computing environment 100 contains an example
of an environment for the execution of at least some of the
computer code involved in performing the inventive meth-
ods, such as fuzzy and semantic text search module 200. In
addition to block 200, computing environment 100 includes,
for example, computer 101, wide area network (WAN) 102,
end user device (EUD) 103, remote server 104, public cloud
105, and private cloud 106. In this embodiment, computer
101 includes processor set 110 (including processing cir-
cuitry 120 and cache 121), communication fabric 111,
volatile memory 112, persistent storage 113 (including oper-
ating system 122 and block 200, as identified above),
peripheral device set 114 (including user interface (UI),
device set 123, storage 124, and Internet of Things (IoT)
sensor set 125), and network module 115. Remote server
104 includes remote database 130. Public cloud 105
includes gateway 140, cloud orchestration module 141, host
physical machine set 142, virtual machine set 143, and
container set 144.

[0029] COMPUTER 101 may take the form of a desktop
computer, laptop computer, tablet computer, smart phone,
smart watch or other wearable computer, mainframe com-
puter, quantum computer or any other form of computer or

Aug. 15,2024

mobile device now known or to be developed in the future
that is capable of running a program, accessing a network or
querying a database, such as remote database 130. As is well
understood in the art of computer technology, and depending
upon the technology, performance of a computer-imple-
mented method may be distributed among multiple comput-
ers and/or between multiple locations. On the other hand, in
this presentation of computing environment 100, detailed
discussion is focused on a single computer, specifically
computer 101, to keep the presentation as simple as possible.
Computer 101 may be located in a cloud, even though it is
not shown in a cloud in FIG. 1. On the other hand, computer
101 is not required to be in a cloud except to any extent as
may be affirmatively indicated.

[0030] PROCESSOR SET 110 includes one, or more,
computer processors of any type now known or to be
developed in the future. Processing circuitry 120 may be
distributed over multiple packages, for example, multiple,
coordinated integrated circuit chips. Processing circuitry
120 may implement multiple processor threads and/or mul-
tiple processor cores. Cache 121 is memory that is located
in the processor chip package(s) and is typically used for
data or code that should be available for rapid access by the
threads or cores running on processor set 110. Cache memo-
ries are typically organized into multiple levels depending
upon relative proximity to the processing circuitry. Alterna-
tively, some, or all, of the cache for the processor set may be
located “off chip.” In some computing environments, pro-
cessor set 110 may be designed for working with qubits and
performing quantum computing.

[0031] Computer readable program instructions are typi-
cally loaded onto computer 101 to cause a series of opera-
tional steps to be performed by processor set 110 of com-
puter 101 and thereby effect a computer-implemented
method, such that the instructions thus executed will instan-
tiate the methods specified in flowcharts and/or narrative
descriptions of computer-implemented methods included in
this document (collectively referred to as “the inventive
methods™). These computer readable program instructions
are stored in various types of computer readable storage
media, such as cache 121 and the other storage media
discussed below. The program instructions, and associated
data, are accessed by processor set 110 to control and direct
performance of the inventive methods. In computing envi-
ronment 100, at least some of the instructions for performing
the inventive methods may be stored in block 200 in
persistent storage 113.

[0032] COMMUNICATION FABRIC 111 is the signal
conduction paths that allow the various components of
computer 101 to communicate with each other. Typically,
this fabric is made of switches and electrically conductive
paths, such as the switches and electrically conductive paths
that make up busses, bridges, physical input/output ports and
the like. Other types of signal communication paths may be
used, such as fiber optic communication paths and/or wire-
less communication paths.

[0033] VOLATILE MEMORY 112 is any type of volatile
memory now known or to be developed in the future.
Examples include dynamic type random access memory
(RAM) or static type RAM. Typically, the volatile memory
is characterized by random access, but this is not required
unless affirmatively indicated. In computer 101, the volatile
memory 112 is located in a single package and is internal to
computer 101, but, alternatively or additionally, the volatile

US 2024/0273125 Al

memory may be distributed over multiple packages and/or
located externally with respect to computer 101.

[0034] PERSISTENT STORAGE 113 is any form of non-
volatile storage for computers that is now known or to be
developed in the future. The non-volatility of this storage
means that the stored data is maintained regardless of
whether power is being supplied to computer 101 and/or
directly to persistent storage 113. Persistent storage 113 may
be a read only memory (ROM), but typically at least a
portion of the persistent storage allows writing of data,
deletion of data and re-writing of data. Some familiar forms
of persistent storage include magnetic disks and solid state
storage devices. Operating system 122 may take several
forms, such as various known proprietary operating systems
or open source Portable Operating System Interface type
operating systems that employ a kernel. The code included
in block 200 typically includes at least some of the computer
code involved in performing the inventive methods.

[0035] PERIPHERAL DEVICE SET 114 includes the set
of peripheral devices of computer 101. Data communication
connections between the peripheral devices and the other
components of computer 101 may be implemented in vari-
ous ways, such as Bluetooth connections, Near-Field Com-
munication (NFC) connections, connections made by cables
(such as universal serial bus (USB) type cables), insertion
type connections (for example, secure digital (SD) card),
connections made through local area communication net-
works and even connections made through wide area net-
works such as the internet. In various embodiments, Ul
device set 123 may include components such as a display
screen, speaker, microphone, wearable devices (such as
goggles and smart watches), keyboard, mouse, printer,
touchpad, game controllers, and haptic devices. Storage 124
is external storage, such as an external hard drive, or
insertable storage, such as an SD card. Storage 124 may be
persistent and/or volatile. In some embodiments, storage 124
may take the form of a quantum computing storage device
for storing data in the form of qubits. In embodiments where
computer 101 is required to have a large amount of storage
(for example, where computer 101 locally stores and man-
ages a large database) then this storage may be provided by
peripheral storage devices designed for storing very large
amounts of data, such as a storage area network (SAN) that
is shared by multiple, geographically distributed computers.
IoT sensor set 125 is made up of sensors that can be used in
Internet of Things applications. For example, one sensor
may be a thermometer and another sensor may be a motion
detector.

[0036] NETWORK MODULE 115 is the collection of
computer software, hardware, and firmware that allows
computer 101 to communicate with other computers through
WAN 102. Network module 115 may include hardware,
such as modems or Wi-Fi signal transceivers, software for
packetizing and/or de-packetizing data for communication
network transmission, and/or web browser software for
communicating data over the internet. In some embodi-
ments, network control functions and network forwarding
functions of network module 115 are performed on the same
physical hardware device. In other embodiments (for
example, embodiments that utilize software-defined net-
working (SDN)), the control functions and the forwarding
functions of network module 115 are performed on physi-
cally separate devices, such that the control functions man-
age several different network hardware devices. Computer

Aug. 15,2024

readable program instructions for performing the inventive
methods can typically be downloaded to computer 101 from
an external computer or external storage device through a
network adapter card or network interface included in net-
work module 115.

[0037] WAN 102 is any wide area network (for example,
the internet) capable of communicating computer data over
non-local distances by any technology for communicating
computer data, now known or to be developed in the future.
In some embodiments, the WAN may be replaced and/or
supplemented by local area networks (LLANs) designed to
communicate data between devices located in a local area,
such as a Wi-Fi network. The WAN and/or LANs typically
include computer hardware such as copper transmission
cables, optical transmission fibers, wireless transmission,
routers, firewalls, switches, gateway computers and edge
servers.

[0038] END USER DEVICE (EUD) 103 is any computer
system that is used and controlled by an end user (for
example, a customer of an enterprise that operates computer
101), and may take any of the forms discussed above in
connection with computer 101. EUD 103 typically receives
helpful and useful data from the operations of computer 101.
For example, in a hypothetical case where computer 101 is
designed to provide a recommendation to an end user, this
recommendation would typically be communicated from
network module 115 of computer 101 through WAN 102 to
EUD 103. In this way, EUD 103 can display, or otherwise
present, the recommendation to an end user. In some
embodiments, EUD 103 may be a client device, such as thin
client, heavy client, mainframe computer, desktop computer
and so on.

[0039] REMOTE SERVER 104 is any computer system
that serves at least some data and/or functionality to com-
puter 101. Remote server 104 may be controlled and used by
the same entity that operates computer 101. Remote server
104 represents the machine(s) that collect and store helpful
and useful data for use by other computers, such as computer
101. For example, in a hypothetical case where computer
101 is designed and programmed to provide a recommen-
dation based on historical data, then this historical data may
be provided to computer 101 from remote database 130 of
remote server 104.

[0040] PUBLIC CLOUD 105 is any computer system
available for use by multiple entities that provides on-
demand availability of computer system resources and/or
other computer capabilities, especially data storage (cloud
storage) and computing power, without direct active man-
agement by the user. Cloud computing typically leverages
sharing of resources to achieve coherence and economies of
scale. The direct and active management of the computing
resources of public cloud 105 is performed by the computer
hardware and/or software of cloud orchestration module
141. The computing resources provided by public cloud 105
are typically implemented by virtual computing environ-
ments that run on various computers making up the com-
puters of host physical machine set 142, which is the
universe of physical computers in and/or available to public
cloud 105. The virtual computing environments (VCEs)
typically take the form of virtual machines from virtual
machine set 143 and/or containers from container set 144. It
is understood that these VCEs may be stored as images and
may be transferred among and between the various physical
machine hosts, either as images or after instantiation of the

US 2024/0273125 Al

VCE. Cloud orchestration module 141 manages the transfer
and storage of images, deploys new instantiations of VCEs
and manages active instantiations of VCE deployments.
Gateway 140 is the collection of computer software, hard-
ware, and firmware that allows public cloud 105 to com-
municate through WAN 102.

[0041] Some further explanation of virtualized computing
environments (VCEs) will now be provided. VCEs can be
stored as “images.” A new active instance of the VCE can be
instantiated from the image. Two familiar types of VCEs are
virtual machines and containers. A container is a VCE that
uses operating-system-level virtualization. This refers to an
operating system feature in which the kernel allows the
existence of multiple isolated user-space instances, called
containers. These isolated user-space instances typically
behave as real computers from the point of view of programs
running in them. A computer program running on an ordi-
nary operating system can utilize all resources of that
computer, such as connected devices, files and folders,
network shares, CPU power, and quantifiable hardware
capabilities. However, programs running inside a container
can only use the contents of the container and devices
assigned to the container, a feature which is known as
containerization.

[0042] PRIVATE CLOUD 106 is similar to public cloud
105, except that the computing resources are only available
for use by a single enterprise. While private cloud 106 is
depicted as being in communication with WAN 102, in other
embodiments a private cloud may be disconnected from the
internet entirely and only accessible through a local/private
network. A hybrid cloud is a composition of multiple clouds
of different types (for example, private, community or public
cloud types), often respectively implemented by different
vendors. Each of the multiple clouds remains a separate and
discrete entity, but the larger hybrid cloud architecture is
bound together by standardized or proprietary technology
that enables orchestration, management, and/or data/appli-
cation portability between the multiple constituent clouds. In
this embodiment, public cloud 105 and private cloud 106 are
both part of a larger hybrid cloud.

[0043] Referring now to FIG. 2, a block diagram is
depicted of an example tangible, non-transitory computer-
readable medium 201 that can execute fuzzy and semantic
text search over a sliding window of text. The tangible,
non-transitory, computer-readable medium 201 may be
accessed by a processor 202 over a computer interconnect
204. Furthermore, the tangible, non-transitory, computer-
readable medium 201 may include code to direct the pro-
cessor 202 to perform the operations of the methods 300-500
of FIGS. 3-5.

[0044] The various software components discussed herein
may be stored on the tangible, non-transitory, computer-
readable medium 201, as indicated in FIG. 2. For example,
the fuzzy and semantic text search module 200 includes an
LSH fingerprint pre-computer sub-module 206 that includes
code to precompute LSH fingerprints of a set of subword-
units belonging to a vocabulary of a subword-unit tokenizer
using a locally-sensitive hashing (LSH)-based method. For
example, the LSH-based method may be MinHash or
SimHash. The fuzzy and semantic text search module 200
also includes a token-level fingerprint computer sub-module
208 that includes code to compute a token-level fingerprint
for each of a number of tokens in a received window of text.
For example, the token-level fingerprint may be a word

Aug. 15,2024

fingerprint. The token-level fingerprint computer module
208 also includes code to compute the token-level finger-
print based on a number of precomputed locality-sensitive
hashing (LSH) fingerprints. The fuzzy and semantic text
search module 200 also includes a window representation
computer sub-module 210 that includes code to compute a
window representation for a window of text based on the
token-level fingerprints. The window representation com-
puter sub-module 210 also includes code to. The fuzzy and
semantic text search module 200 also includes a window
representation updater sub-module 212 that includes code to
update the window representation in a rolling scheme when
sliding the window of text. The fuzzy and semantic text
search module 200 also includes a dense representation
generator sub-module 214 that includes code to use the
window representation as input for a projection-based sen-
tence encoder model to infer a dense representation for the
window and compare the dense representation of the win-
dow with a dense representation of an input query to execute
a semantic matching of the input query against the text in the
window. The fuzzy and semantic text search module 200
also includes a fuzzy matching and semantic search sub-
module 216 that includes code to compare the dense repre-
sentation of the window with a dense representation of an
input query to execute a semantic matching of the input
query against the text in the window. In some examples, the
fuzzy matching and semantic search sub-module 216
includes code to receive a text query, compute a query
representation based on computed token-level fingerprints,
and compare the query representation with the window
representation using a similarity function. In this manner, the
fuzzy matching and semantic search sub-module 216 may
also execute a fuzzy matching.

[0045] FIG. 3 is a process flow diagram of an example
method that can compute window representations over a
sliding window of text without hash computation over the
full-text. The method 300 can be implemented with any
suitable computing device, such as the computer 101 of FIG.
1. For example, the methods described below can be imple-
mented by the processor set 110 of FIG. 1.

[0046] At block 302, LSH fingerprints are precomputed
for subword units belonging to a vocabulary of a subword-
unit tokenizer. In various examples, the LSH fingerprints are
computed with an [LSH-based method that satisfies the
associativity property. In some examples, the LSH finger-
prints may be pre-computed using a MinHash fingerprint.
The main idea of MinHash is to compute multiple hash
functions for each element of a set (e.g., the n-grams of the
text) and represent the set with a fingerprint that corresponds
to the minimum values, for each function, across all the
elements of the set. Therefore, the fingerprint of a text is a
vector of n positive integers, one for each of the n hash
functions. A very interesting and powerful property of
MinHash fingerprints is the associativity. For example, a
MinHash fingerprint FEN” is an array of n positive integers
F,to F,,_;, computed with n distinct hash functions h,(x) to
h, ,(X) mapping strings to positive integers. In various
examples, the method 300 can rely on the associativity
property of MinHash to calculate the MinHash fingerprint
F, of each input token T. In particular, F, is computed by
reusing the fingerprint of individual subword units in which
the token T can be subtokenized. Since the number of
different subword units is limited and known in advance
given a pre-trained tokenizer, the fingerprints of all the

US 2024/0273125 Al

subword units can thus be pre-computed and cached. For
example, for each input token T, a processor can perform
subword-unit tokenization. Subword-unit tokenization is a
process which transforms each input token into a list of
subword units. Then, for each subword unit u, the processor
can calculate its fingerprint F, as follows. In the general
case, each element F,j, with 0< i<n, is obtained by first
applying a hash function h,(x) to each of the trigrams v, to
v, extracted from the subword u, with k21. Then, F,’ is
obtained as the minimum hash value across trigrams. For
example, each element F,’ may be obtained using the equa-
tion:

FL = min(hi(vo), ..., hi(vie1) Eq. 1

For example, for the subword unit “Bring”, F,.,." can be
computed as FBrmgizmin(hi(“Bri”), h,(“rin”), h,(“ing™)), as
depicted and described in the example of FIG. 7. The output
SimHash fingerprints may be vectors of integers.

[0047] Alternatively, in some embodiments, the processor
may precompute the LSH fingerprints using SimHash.
SimHash is a very similar technique to MinHash that has
also been designed for detecting near-duplicate documents.
To compute the SimHash value of a text, hash functions are
computed over the different n tokens of a text. The n binary
hash values Hy, . . ., H,,_; corresponding to the n tokens of
the text A are first combined into an histogram T, of size k,
where k corresponds to the size in bits of the hash values.
For example, the size of the hash values may be 64 bits. The
value T," of the histogram in position i, with 0<i<k is
computed by taking into account the bits H,', H,%, ..., H,_,".
In particular, the value of 1 is added to T’ if Hji is non-zero,
and —1 otherwise. The final SimHash value for a text Ais a
k-bit binary vector storing the sign of T . In other words, +1
if the value is positive, and —1 otherwise. Like MinHash,
SimHash offers associativity properties. In particular, given
an histogram of the text A and the histogram of the text B,
the histogram of A+B can be computed by aggregating the
histograms T, and T. Accordingly, in various examples, if
SimHash is chosen over MinHash, then the processor can
compute a representation of each subword units, as depicted
and described in the example of FIG. 8. In particular, in
these embodiments, the computed histograms for each sub-
word units are of size k, which corresponds to the size in bits
of the hash function used. In some examples, the number of
bits may be 256 for the algorithm SHASUM-256. In various
examples, the histogram for the subword unit is computed
by summing up the histograms corresponding to the each
n-gram. The SimHash fingerprints may be binary vectors.

[0048] At block 304, token-level fingerprints for each
token in a received window of text are computed. For
example, the token-level may be at the level of a word. In
various examples, the token-level fingerprints may be com-
puted for each token based on a number of precomputed
LSH fingerprints. In some examples, the processor can
perform subword-unit tokenization of each individual word
in the window. For example, the processor can tokenize the
received text into tokens and, for each of the tokens, perform
a subword-unit tokenization. With the precomputed table
storing MinHash or SimHash fingerprints for each subword-
unit in the vocabulary, a final representation can be com-
puted using the associativity property of MinHash or

Aug. 15, 2024

SimHash. As one example, the MinHash fingerprint of a
word w made of the subword units w,, . . ., w,_; can be
efficiently computed as the minimum, element-wise of each
subword-unit fingerprint F . . ., F,, ;. Again, this process
is possible due to the associativity property of MinHash. In
various examples, the output token-level fingerprint using
MinHash may be stored as counting bloom filter. Bloom
filters are a probabilistic data structure that stores elements
of a set in a very compact form. Bloom filters can be used
to perform membership queries over the set and can provide
bounded guarantees in terms of false positive, and do not
provide false negatives. Counting bloom filters are an exten-
sion to bloom filters that enable the addition and deletion of
elements from the set represented by the data structure. In
various examples, this property of counting bloom filters
may be used to enable the efficient computation of text
features over a sliding window of text. Alternatively, in some
examples, the SimHash histogram of a word w made of the
subword units wg, . . ., W,_; can be computed by summing
up the histograms corresponding to each word. The output
token-level fingerprint using SimHash may thus be a histo-
gram. In these manners, computing LSH hash functions over
a given text is completely avoided because the representa-
tion of subword units are pre-computed and cached. In
particular, in either case, the representation of a text is
obtained as an aggregation of pre-computed representations.
The aggregation may thus only use efficient operations in the
integer space, such as minimum and sum operations.

[0049] At block 306, a window representation for the
window of text is computed based on the token-level fin-
gerprints. In various examples, the text representation for a
window of text uses as input the MinHash fingerprints of
each word, or the SimHash histograms, depending of the
LSH technique in use. In the example of MinHash, the
processor can store the individual representations, or the
fingerprints of each word, in a Counting Bloom Filter
(CBF). The CBF data structure can be directly used to
compare the text of the window with the query text. In
particular, when two texts are similar at the character level,
the corresponding CBFs storing their MinHash fingerprints
will have a high cosine similarity. Moreover, the CBF data
structure supports addition and removal of elements. The
processor may use this property to have an efficient method
to update the CBF while sliding the window. An example
MinHash-based window representation calculated is
described in FIG. 9. Alternatively, in the example of
SimHash, the processor can use as a representation the k-bit
SimHash fingerprint storing the sign of the SimHash histo-
gram, built by summing up the histogram of each individual
words. This way, comparing the input representation of the
input query q will consist of computing the Hamming
distance between the fingerprint of the query (encoded as
k-bit fingerprint) and the windows’ fingerprint. An example
overall process of computing a window representation using
SimHash is described with respect to FIG. 10. As previously
discussed, the MinHash is associative. Due to this property,
the processor can compute the fingerprint of an entire
window as the minimum value, element-wise, of the finger-
prints corresponding to individual words. The fingerprint of
the first window w,, is stored as a CBF, which is practically
a histogram of size s, where s is a configurable parameter. In
various examples, each column of the histogram stores the
number of times the fingerprint value F, ' mod s has been
seen. For example, the modulo operator may be used to store

US 2024/0273125 Al

potentially large fingerprint values F, . into a small and
fixed-size array. An example population of the CBF for a
first window is described in the example of FIG. 11.
[0050] At block 308, the processor updates the window
representation in a rolling scheme when sliding the window
of text. For example, the processor can slide the window of
text by a text unit, such as one word or phrase, and update
the window representation without any hash computation
over the full text of the slided window. In various examples,
the processor can interchangeably use MinHash or SimHash
to efficiently update the representation of text under the
window. In various examples, the window may slide at the
level of the word and not at the character level. In some
examples, as in case of MinHash, updating the representa-
tion only involves changes to the Counting Bloom Filter. In
some examples, as in case of SimHash, updating the repre-
sentation only involves histogram changes. In both embodi-
ments, the update is efficient and does not require any hash
computation over the full text. The approach required to
slide the window for the two LSH methods is depicted in
FIGS. 9 and 10. In particular, an example process of
updating the windows for MinHash is described in FIG. 9.
An example process for updating the windows for SimHash
is similarly described in FIG. 10. An example system
process of sliding the window to the next window is also
described in the example of FIG. 11. In these manners, the
processor can update the window representation by taking
into account the token-level fingerprint values of the token
which enters and of the token which leaves the window. This
operation does not require any computation of hash func-
tions due to caching of hashes. In some examples, the
processor can concurrently update a number of windows of
increasing size. For example, instead of one window of size
L, the processor can update N windows of size L, . . .
where L_0!=...!=L, .

[0051] The process flow diagram of FIG. 3 is not intended
to indicate that the operations of the method 300 are to be
executed in any particular order, or that all of the operations
of the method 300 are to be included in every case. For
example, in some embodiments, the precomputation of LSH
fingerprints may be excluded. Additionally, the method 300
can include any suitable number of additional operations.
[0052] FIG. 4 is a process flow diagram of an example
method that can perform fuzzy matching using updated
window representations over a sliding window of text. The
method 400 can be implemented with any suitable comput-
ing device, such as the computer 101 of FIG. 1. For example,
the methods described below can be implemented by the
processor set 110 of FIG. 1.

[0053] At block 402, a text query and document to be
queried are received. For example, the text query may be one
or more words.

[0054] At block 404, word fingerprints are computed for
each word in text query and window of text in document
based on precomputed L.SH fingerprints. For example, the
LSH fingerprints may be MinHash or SimHash fingerprints.
[0055] At block 406, a window representation and query
representation are computed for the window of text and the
input query based on the word fingerprints. In some
examples, the window representation and query representa-
tion may be stored in the form of a counting bloom filter
(CBF).

[0056] At block 408, a fuzzy comparison between window
representation and query representation is executed. In vari-

s LN—l

Aug. 15,2024

ous examples, the fuzzy comparison may be executed using
any suitable similarity function. For example, in MinHash
embodiments, the CBFs corresponding to the window rep-
resentation may be directed compared to the CBF corre-
sponding to the input text query using Jacccard similarity or
the cosine similarity of the corresponding vectors. In
SimHash embodiments, the text query is encoded using the
bit representation of the histogram and the similarity func-
tion used is therefore the Hamming distance instead of the
Jaccard similarity.

[0057] Atblock 410, a sliding window of text in document
is slid to the next text unit and window representation is
updated. For example, the text unit may be a phrase or entity.
In various examples, the updated window representation is
efficiently updated. For example, in the case of MinHash,
updating the window representation may only involve
changing the CBF. In the case of SimHash, updating the
window representation may only involve histogram modi-
fications.

[0058] Atblock 412, a fuzzy comparison between updated
window representation and query representation is executed.
For example, the fuzzy comparison may be executed using
any suitable similarity function, as described in block 408.
[0059] At decision diamond 414, a determination is made
as to whether the end of a document has been reached. If the
end of a document has been reached, then the method may
proceed to block 416. If the end of the document has not yet
been reached, then the method may proceed at block 410.

[0060] At block 416, the results of the fuzzy matching are
output. For example, the results may include a list of
matching phrases. In some examples, a score for reach of the
phrases may be output. For example, the score may be the
cosine similarity between the query text and each of the
results in the list.

[0061] The process flow diagram of FIG. 4 is not intended
to indicate that the operations of the method 400 are to be
executed in any particular order, or that all of the operations
of the method 400 are to be included in every case. Addi-
tionally, the method 400 can include any suitable number of
additional operations.

[0062] FIG. 5 is a process flow diagram of an example
method that can perform semantic matching using updated
window representations over a sliding window of text. The
method 500 can be implemented with any suitable comput-
ing device, such as the computer 101 of FIG. 1. For example,
the methods described below can be implemented by the
processor set 110 of FIG. 1. The method 500 of FIG. 5§
includes similarly numbered elements of FIG. 4. In particu-
lar, at block 402, a text query and document to be queried are
received. At block 404, word fingerprints are computed for
each word in text query and window of text in document
based on precomputed LSH fingerprints. At block 406, a
window representation and query representation are com-
puted for the window of text and the input query based on
the word fingerprints.

[0063] At block 502, dense representations of window
representation and query representation are generated. For
example, the dense representations may be generated using
a projection-based model. In various examples, the window
representation may be used as input for a projection-based
sentence encoder model to infer a dense representation for
the window. In some examples, a sentence encoder model
may be distilled into a projection-based model to obtain a
sentence encoder. In some examples, the projection to the

US 2024/0273125 Al

dense space is performed only for windows of text having a
window representation morphologically similar or totally
dissimilar to the morphological representation of a list of
input queries. For example, each window may potentially
have two representations: one morphological representation
like text representation 610 and another semantic represen-
tation like 616, as shown in FIG. 6. When performing a
comparison on two windows, the processor can potentially
use two thresholds: one for the morphological comparison
and one for the semantic comparison. In some examples, as
long as one of the comparison is similar enough, then the
processor can consider the two windows similar. In some
examples, the projection to the dense space is performed
only for windows of text having a token with a representa-
tion morphologically similar or totally dissimilar to a mor-
phological representation of a list of input queries. For
example, the processor can consider there is at least one
token overlap between a query and a window to compute the
dense representation.

[0064] At block 504, a semantic comparison between
dense representations of window representation and query
representation is executed. The dense representation of the
window may be compared with a dense representation of an
input query to execute a semantic matching of the input
query against the text in the window. For example, the
semantic comparison may be executed using a distance
calculated between the dense representations. For example,
the distance between vectors of the dense representations
may be calculated using any suitable distance function, such
as cosine similarity. In some examples, the distance between
the vectors may be calculated using the Euclidean distance
between dense representation vectors.

[0065] At block 410, a sliding window of text in document
is slid to the next text unit and window representation is
updated. For example, text unit may be a phrase or entity. In
various examples, the updated window representation is
efficiently updated. For example, in the case of MinHash,
updating the window representation may only involve
changing the CBF. In the case of SimHash, updating the
window representation may only involve histogram modi-
fications.

[0066] At block 506, an updated dense representation of
the updated window representation is generated. For
example, the updated dense representation may be generated
using the projection-based model by inputting the updated
dense representation into the projection-based model and
receiving an updated dense representation.

[0067] At block 508, a semantic comparison is executed
between updated dense representation of window represen-
tation and dense representation of query representation. For
example, the semantic comparison be executed using a
distance calculated between the dense representations. For
example, the distance may be calculated using any suitable
distance function, as described in block 504.

[0068] At block 414 a determination is made as to whether
the end of a document has been reached. If the end of a
document has been reached, then the method may proceed
to block 510. If the end of the document has not yet been
reached, then the method may proceed at block 410.

[0069] At block 510, results of the semantic search are
output.
[0070] The process flow diagram of FIG. 5 is not intended

to indicate that the operations of the method 500 are to be
executed in any particular order, or that all of the operations

Aug. 15,2024

of the method 500 are to be included in every case. Addi-
tionally, the method 500 can include any suitable number of
additional operations.

[0071] With reference now to FIG. 6, a block diagram
shows an example system for executing a fuzzy and seman-
tic text search based on a shared text representation, accord-
ing to embodiments described herein. The example system
is generally referred to by the reference number 600. FIG. 6
includes an input query 602 and a received text 604. For
example, the input query 602 may be a sentence of words
that is to be matched against the text 604 for similarity in
both form via fuzzy matching and meaning via semantic
matching. The system 600 includes a window 606. For
example, the window 606 may be a sliding window of words
in text 604. In various examples, the number of words in the
sliding window 606 may match the number of words in the
received query 602. The system 600 includes a query
representation 608 shown including five values. In various
examples, the query representation 608 is a morphological
representation of the input query 602. For example, the
query representation 608 may be generated using any suit-
able LSH-based method, such as the MinHash fingerprint
method described in FIG. 7 or the SimHash fingerprint
method described in FIG. 8.

[0072] In the example of FIG. 6, the system 600 unifies
fuzzy string matching and semantic search using the same
text representation. For example, the input query 602 for the
system may be a text query g, which can be one or multiple
words. Given input query 602, a task may include finding all
the occurrences of text that is morphologically or semanti-
cally similar in the text 604 using a sliding window
approach. In particular, morphological similarity can be
used to find occurrences that are not exactly the same at the
byte or character level, but similar enough such as in the
cases of misspellings. This notion of detecting morphologi-
cal similarity is also referred herein as fuzzy matching. In
addition, semantic similarity can be used to find concepts
which are related in terms of meaning, even if they have a
completely different surface form. As one example, of
semantic similarity, “support vector machine” is semanti-
cally close to “logistic regression.” In various examples, the
system 600 uses an algorithmic approach that unifies mor-
phological similarity and semantic similarity. In particular,
the system 600 can generate a text representation 610 of a
given window of text 606 which can be directly used to
enable fuzzy matching 612, and can also be updated effi-
ciently when sliding the window 606, and can further be
used without modification as an input feature for projection-
based models 614 to enable semantic searches via the
semantic matching 620.

[0073] Similar to rolling hashing approaches, the system
600 can slide over the text using a window of a fixed size.
In the example of FIG. 6, the fixed window size is five
tokens, which are words in this example. The main differ-
ence with previous rolling window approaches is that
instead of sliding the window at the character level, we rely
on subword-unit tokenization schemes to move the window
at the subword-unit level. In this manner, the sliding window
606 can be moved multiple characters to the right for a
single sliding step, increasing the efficiency of the method.
[0074] In contrast with exact matching algorithms, the
system 600 uses a representation for the text under the
current window 606 that is not a standard hash function, but
an LSH function. In particular, LSH functions for text offer

US 2024/0273125 Al

associativity properties. Thus, the window sliding mecha-
nism that updates sliding window 606 relies on the associa-
tivity property of an LSH function, such as MinHash or
SimHash. In this manner, sliding the window 606 by a single
word does not require recomputing the representation from
scratch for the entire window 606. Instead, the system 600
can rather update the window representation 610 by taking
into account the leftmost word (or subword unit) falling
outside of the window 606 and the new word at the right
entering into the new window 606. Thanks to the associa-
tivity property of MinHash or SimHash, the window repre-
sentation 610 that provides a fingerprint for the entire
window 606 can be efficiently updated.

[0075] Additionally, instead of relying on character-level
hash functions, the system 600 uses subword unit tokenizers,
which transform the text into sequences of subword units
belonging to a fixed vocabulary. Therefore, in various
examples, the system 600 can pre-compute the representa-
tion of all the subword units and store the subword unit
representations in a cache of a limited size. For example, the
cache size may be in the order of megabytes. By using
caching, sliding the window 606 does not require any
computation of hash functions over text.

[0076] Still referring to FIG. 6, the system 600 may thus
enable fuzzy matching. For example, in embodiments using
a MinHash LSH function, a user may pose as input for the
search system the text query q 602, which will need to be
encoded once as a counting bloom filter (CBF) storing its
MinHash fingerprints. By construction, one can compare the
CBF corresponding to the input query 602 to be encoded
once to extract the query representation 608. In the example
of MinHash, the query representation 608 for the input query
602 is the counting bloom filter storing its MinHash finger-
prints. By construction, one can compare the CBF corre-
sponding to the windows w,, . . . , w,, directly using the
Jaccard similarity or the cosine similarity of the correspond-
ing vectors. These similarity functions can be used to
compare the input query 602 with the window query 606
from a morphological point of view. In embodiments using
SimHash, the input query 602 can be encoded using the bit
representation of the histogram and the similarity function
used may be the Hamming distance instead of the Jaccard
similarity. By construction, the CBFs corresponding to mul-
tiword expressions such as programming language and
programming languages may have a high cosine similarity.
[0077] In addition, the system 600 enables semantic simi-
larity. For enabling of semantic similarity, the system 600
includes the projection-based model M 614 capable of
projecting a discrete features such as the CBF into a dense
representation. For example, instead of storing embedding
vectors for entire words or subword units, a projection-based
model M 614 may be used as a feature extractor that
captures morphological features and represents the morpho-
logical features in a discrete feature. For example, the
features may be represented as hash values. To make the
feature useful for the model, the projection-based model M
614 includes a bottleneck layer transforms the feature into a
dense representation, which is then used within the projec-
tion-based model M 614. For example, the bottleneck layer
is a linear layer responsible for this discrete to dense
transformation. In various examples, the system 600 may be
trained by training sentence encoders with any suitable
projection-based model 614, such as the pNLP-Mixer, first
released 2022, updated accordingly. For example, the pNLP-

Aug. 15,2024

Mixer is a projection-based multi-layer perceptron (MLP)-
Mixer model for natural language processing (NLP). More
specifically, in various examples, the sentence encoder pro-
duces a sentence-level representation. As one specific
example, a projection-based sentence encoder may include
using pre-trained sentence encoders as teacher models and
use a projection-based architecture such as the pNLP-Mixer
as a student in a distillation setup. For example, the student
is updated to produce a sentence-level representation simi-
larly as current transformer-based models. After distillation,
a single forward pass with a projection-based model will
produce a vector representation of the text which can be
compared with the dense representation of the input query
obtained in a similar way. In some examples, of the system,
the system 600 can perform the forward pass using a batch
of multiple windows to improve the efficiency, as depicted
in the example of FIG. 12.

[0078] It is to be understood that the block diagram of
FIG. 6 is not intended to indicate that the system 600 is to
include all of the components shown in FIG. 6. Rather, the
system 600 can include fewer or additional components not
illustrated in FIG. 6 (e.g., additional queries, or additional
text, models, comparisons, window representations, query
representations, dense representations, etc.).

[0079] With reference now to FIG. 7, a block diagram
shows an example system for computing a MinHash finger-
print, for subword units, according to embodiments herein.
The example system 700 of FIG. 7 includes a vocabulary
702 including subword units 704A, 704B, 704C, and 704D,
among other subword units. The system 700 includes
n-grams 706A, 7068, 706C of subword unit 704B. In the
example of FIG. 7, the n-grams 706A, 706B, and 706C are
more specifically trigrams of three letters. The system 700
includes hashes 708 computed for each of the n-grams
706A. The system 700 also includes a minimum function
710 that takes the minimum value of hash values 708
computed for each hash function hy, h;, h,, h;. The system
700 includes a resulting MinHash fingerprint 712.

[0080] In the example of FIG. 7, the MinHash fingerprint
712 of a subword unit 704B contains the minimum hash
values computed over the trigrams 706A, for each hash
function h,-h;. In various examples, token-level fingerprints
for a given token may be computed by aggregating the
fingerprints of its subword units in a similar way. For
example, the minimum values of the subword units may be
similarly selected for inclusion in a token-level fingerprint of
the fingerprints of the subword units.

[0081] It is to be understood that the block diagram of
FIG. 7 is not intended to indicate that the system 700 is to
include all of the components shown in FIG. 7. Rather, the
system 700 can include fewer or additional components not
illustrated in FIG. 7 (e.g., additional words, or additional
subword units, n-grams, hash functions, MinHash finger-
prints, etc.).

[0082] With reference now to FIG. 8, a block diagram
shows an example system for computing a SimHash finger-
print for subword units, according to embodiments herein.
The example system 800 of FIG. 8 includes similarly
numbered elements from FIG. 7. In particular, FIG. 8
includes vocabulary 702, subword units 704A, 704B, 704C,
and 704D, and n-grams 706A, 706B, and 706C. The system
800 further includes hashes 802. The system 800 also
includes histograms generated from hashes 802. The system
800 further includes a summation function 806. The sum-

US 2024/0273125 Al

mation function 806 is shown generating a SimHash histo-
gram 808 from the histograms 804. The system 800 also
further includes a SimHash fingerprint 810 shown generated
based on the SimHash histogram 808.

[0083] In the example of FIG. 8, the SimHash fingerprint
810 of a subword unit 704B “Bring” is computed. In
particular, a histogram 804 of binary hash values may first
be computed based on the hash values 802. For example, the
values in the histogram 804 may be +1 in case the corre-
sponding bit in the hash 802 is 1, -1 if the corresponding bit
in the hash 802 is 0. A SimHash histogram 808 is then
computed by summing together the histogram 804 of binary
hash values. Finally, in various examples, the SimHash
fingerprint is computed based on the SimHash histogram
808 by replacing values greater than zero with “1” and
values not greater than zero with “0”. In various examples,
fingerprints for a given token are computed by summing the
fingerprints of its subword units in a similar way.

[0084] It is to be understood that the block diagram of
FIG. 8 is not intended to indicate that the system 800 is to
include all of the components shown in FIG. 8. Rather, the
system 800 can include fewer or additional components not
illustrated in FIG. 8 (e.g., additional words, or additional
subword units, n-grams, histograms, SimHash fingerprints,
etc.).

[0085] With reference now to FIG. 9, a block diagram
shows an example system for computing a sliding window
representation using MinHash. The example system is gen-
erally referred to by the reference number 900. The system
900 of FIG. 9 is shown operating at a first timestep 902A and
second timestep 902B. The first timestep 902A is associated
with a first window 904 A and the second timestep 902B is
associated with a second window 904B. The system 900 is
shown receiving text including words 906A, 9068, 906C,
and 906D. In particular, the word 906A is “The”, the word
906B is “sun”, the word 906C is “is”, and the word 906D is
“hot”. At timestep 902A, the sliding window 904A includes
the words 906A, 9068, 906C while at timestep 902B the
sliding window 904B includes the words 906B, 906C, and
906D.

[0086] In the example of FIG. 9, the MinHash system 900
stores the minimum and the second minimum for each
window 904A and 904B. When the system 900 rolls the
window 904A to the window 904B of step t+1 902B, if the
old hash h,_, 908A has a minimum value F=h,_,’, then the
system 900 updates fingerprint F* 910A to the new finger-
print 910B by taking the minimum between the second
minimum (either h,_,” or h/) or the new value h,, ,”. In the
example of FIG. 9, two minimums are updated. The first
minimum updated is the value of “2” from old hash 908A,
which is replaced by the new minimum of “1” in new hash
908D. In addition, the minimum of “1” from hash 908C is
updated with the new minimum of “0” in new hash 908D.
The resulting new MinHash fingerprint 910B therefore has
updated values (0,1,4,1).

[0087] It is to be understood that the block diagram of
FIG. 9 is not intended to indicate that the system 900 is to
include all of the components shown in FIG. 9. Rather, the
system 900 can include fewer or additional components not
illustrated in FIG. 9 (e.g., additional or different tokens, or
additional windows, timesteps, etc.).

[0088] With reference now to FIG. 10, a block diagram
shows an example system for computing a sliding window
representation using SimHash. The example system 1000 of

Aug. 15,2024

FIG. 10 includes similarly referenced elements described in
FIG. 9. For example, the system 100 includes In addition,
the system 1000 includes windows 904A and 904B, and
words 906A, 906B, 906C, and 906D as input. The system
1000 also further includes binary hashes 1002A and 1002B,
and corresponding histograms 1004A and 1004B. The sys-
tem 100 further includes SimHash histograms 1006A and
1006B, and corresponding SimHash fingerprints 1008 A and
1008B.

[0089] In the example of FIG. 10, an example represen-
tation update algorithm is shown for the case of SimHash.
Similar to MinHash in FIG. 9, updating the windows only
uses integer operations. In practice, sliding the window is
even more efficient than the example of MinHash as it only
involves summing the histograms 1004B of the word 906D
entering and the word 906A leaving the window 904B. In
particular, the conditional instruction to keep the minimum
is avoided, making the update process more efficient in
modern superscalar processors and amenable to Single
Instruction, Multiple Data (SIMD) vectorization.

[0090] Still referring to FIG. 10, the SimHash stores a
current histogram 1004A and 1004B for each window from
which a binary fingerprint 1008A and 1008B is then com-
puted. When the processor rolls the window to step t+1
904B, the processor subtracts from the current histogram
h,,, 1004A the histogram h, , from the step t and adds the
new histogram at step t+1. In the example of FIG. 10, the old
histogram associated with word 906 A has values of (-1,-
1,1,-1) and the new histogram associated with word 906D
has values of (1, 1, -1, 1). Thus, the old finger print 1008 A
having values of (0,1,1,0) has its first and third values
updated to reflect the new histogram values, resulting in the
SimHash fingerprint 1008B with values (1,1,0,0).

[0091] It is to be understood that the block diagram of
FIG. 10 is not intended to indicate that the system 1000 is
to include all of the components shown in FIG. 10. Rather,
the system 1000 can include fewer or additional components
not illustrated in FIG. 10 (e.g., additional or different tokens,
or additional timesteps text, histograms, or fingerprints,
etc.).

[0092] With reference now to FIG. 11, a block diagram
shows an example system for populating a counting bloom
filter (CBF) for a first window and sliding the window to the
next one, according to embodiments described herein. The
example system 1100 of FIG. 11 includes an input text 1102
including words 1104A, 1104B, 1104C, 1104D, and 1104E,
among others. The system 1100 includes a set of correspond-
ing hashes 1106A, 1106B, 1006C, 1106D, and 1106E com-
puted for words 1104 A, 11048, 1104C, 1104D, and 1104E.
The system 1100 also includes two windows 1108A and
1108B representing the position of a sliding window at two
different positions along the input text 1102. As seen in FIG.
11, the size of the sliding window in system 110 is four
tokens, which are words in the example of FIG. 11. The
system 1100 further includes MinHashes 1100A and 1100B
generated for windows 1106A and 1106B, respectively. In
addition, the system 1100 includes counting bloom filters
1112A and 1112B.

[0093] Still referring to FIG. 11, in various examples,
counting bloom filters 1112A and 1112B may be used to
store values of input queries and window representations for
a sliding window.

[0094] In the example of FIG. 11, the system 1100 com-
putes the hashes of each word. Then, for each window, the

US 2024/0273125 Al

system 1100 computes the MinHash fingerprint of the
words’ hashes and produces a counting bloom filter (CBF)
1112A. For the next window, the system 1100 does not
recompute a CBF from scratch, but instead updates the
previous CBF. In the example of FIG. 11, hash values in the
range from 1 to 16 are assumed to fit the buckets of the
counting bloom filter. However, in practice, the hash values
may be significantly larger than the counting bloom filter
size. Therefore, in various examples, the system 110 may
use the modulo operator to reduce the size of the hash
values. For example, the hash value may be between 1 and
the size of the counting bloom filter.

[0095] Still referring to FIG. 11, when moving from the
window w 1108A to the next window w+1 1108B, the
counting bloom filter 1112A can be updated to counting
bloom filter 1112B by taking into account the word which
goes out of the window with fingerprint Four and the word
which enters the window with fingerprint F,,. In the par-
ticular example of FIG. 11, the word “a” 1104A is being left
out, and the new word “is” 1104D is being added in. In
various examples, the removal process takes into account
the minimum value of the fingerprint for each position i. For
example, if the fingerprint value F,’ is coming from T,
then the histogram corresponding to the fingerprint value
from the CBF is decreased by one, and the histogram
corresponding to the minimum value is increased by one.
The minimum value is the minimum between F, and the
second minimum of the window w. In the example of FIG.
11, old elements 1114 are accordingly removed and new
elements 1116 are accordingly added to the updated count-
ing bloom filter 1112B. Therefore, in this manner, updating
the window representation only uses integer operations and
a conditional to keep the minimum updated.

[0096] It is to be understood that the block diagram of
FIG. 11 is not intended to indicate that the system 1100 is to
include all of the components shown in FIG. 11. Rather, the
system 1100 can include fewer or additional components not
illustrated in FIG. 11 (e.g., additional or different tokens, or
additional windows, counting bloom filters, etc.).

[0097] With reference now to FIG. 12, a block diagram
shows an example system for efficiently calculating dis-
tances for a number of sliding window dense representations
using batch matrix multiplication. The example system 1200
of FIG. 12 includes a set of counting bloom filters 1202. The
system 1200 includes a projection 1204 generating a set of
dense representations 1206. For example, the projection
1204 may executed by a projection-based model. The sys-
tem 1200 includes a batch matrix multiplication 1208 that
includes performing a matrix multiplication of the dense
representations 1206 with a query matrix 1210 to result in a
set of distances 1210.

[0098] In the example of FIG. 12, given a counting bloom
filter 1202 for each of a number of windows, a projection-
based model computes the dense representations 1206 as
indicated in projection 1204. The dense representations
1206 are then used to compute the cosine similarity with a
matrix storing the dense representations 1206 of the input
query.

[0099] It is to be understood that the block diagram of
FIG. 12 is not intended to indicate that the system 1200 is
to include all of the components shown in FIG. 12. Rather,
the system 1200 can include fewer or additional components

Aug. 15,2024

not illustrated in FIG. 12 (e.g., additional windows, counting
bloom filters, or additional projections, dense representa-
tions, distances, etc.).

[0100] FIG. 13 is a screenshot of an example results of a
fuzzy matching executed according to embodiments
described herein. The screenshot 1300 of FIG. 13 includes
a keyword 1302 used as query input and a list 1304 of
resulting matches.

[0101] To demonstrate the behavior of embodiments
described herein, 500,000 multiword expressions were
extracted from the arXiv2 scientific article database. Then,
the counting bloom filter of each multiword expression was
computed and the CBFs embedded and cosine similarity
computed at scale to obtain the top-k similar terms given a
query. The results for querying “graph neural network™ on
the resulting system are shown in FIG. 13.

[0102] As seen in FIG. 13, prefixations and suffixations,
such as novel graph neural network, graph, and neural
network model are captured. However, more impressively,
using the counting bloom filter enables fuzzy matching. In
particular, multiword expressions were found that are some-
how similar to the query but cannot be found with standard
search tools. For example, in addition to prefixations and
suffixations, the embodiments described herein were shown
to be able to capture typos and affixations with infixes. For
example, the list 1304 includes “graph convolutional neural
network”. The embodiments were also shown to capture
similar morphological-level words. For example, “graphene
network™ is included in the list 1304. Thus, the embodiments
described herein enable the matching of non-trivial varia-
tions, such as typos, inserting words as infixes, or morpho-
logically-similar terms, in addition to trivial variations, such
as plural forms, or terms with adjectives prepended or
appended.

[0103] FIGS. 14A and 14B are tables 1400A and 1400B of
example results of a semantic similarity executed according
to embodiments described herein. The tables 1400A and
1400B includes example queries 1402A, 1402B, 1402C,
1402D, and 1402E. The tables 1400A and 1400B further
include a list of top results for each of example queries
1402A, 1402B, 1402C, 1402D, and 1402E with correspond-
ing cosine similarity scores.

[0104] To demonstrate the effectiveness of the produced
semantic sentence-level representations, an updated version
of the pNLP-Mixer was trained in a distillation fashion on
one million sentences from Wikipedia. Then, the trained
model was queried with several sentences that were seman-
tically different. Tables 1400A and 1400B show some
example outputs of some of the example queries 1402A,
1402B, 1402C, 1402D, and 1402E. As shown in FIGS. 14A
and 14B, the top results for queries 1402A, 1402B, 1402C,
1402D, and 1402E are observably highly similar to the
query sentences of queries 1402A, 1402B, 1402C, 1402D,
and 1402E in terms of semantics.

[0105] The descriptions of the various embodiments of the
present techniques have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-

US 2024/0273125 Al

nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

1. A system, comprising a processor to:

compute a token-level fingerprint for each of a plurality of

tokens in a received window of text, wherein a subset
of tokens within the plurality of tokens are subword
unit tokens;
compute a window representation for the received win-
dow of text based on the token-level fingerprints; and

update the window representation in a rolling scheme
when sliding the window of text to generate a second
window representation.

2. The system of claim 1, wherein a second subset of
tokens within the plurality of tokens comprise words.

3. The system of claim 1, wherein the window represen-
tation comprises a counting bloom filter.

4. The system of claim 1, wherein the token-level finger-
prints comprise histograms.

5. The system of claim 1, wherein the window represen-
tation comprises a window-level fingerprint of merged
token-level fingerprints of all the plurality of tokens within
the window of text.

6. The system of claim 1, wherein the processor is
configured to input the window representation into a pro-
jection-based sentence encoder model to infer a dense
representation for the window of text.

7. (canceled)

8. A computer-implemented method, comprising:

computing, via a processor, a token-level fingerprint for

each of a plurality of tokens in a received window of
text;

computing, via the processor, a window representation for

a window of text based on the token-level fingerprints;
and

inferring a dense representation for the window of text

using the window representation.

9. The computer-implemented method of claim 8,
wherein the dense representation is inferred for the window
of text using the window representation as input for a
projection-based sentence encoder model.

10. The computer-implemented method of claim 9, com-
prising comparing, via the processor, the dense representa-
tion of the window of text with a dense representation of an
input query to execute a semantic matching of the input
query against the text in the window.

11. (canceled)

12. The computer-implemented method of claim 8, com-
prising receiving, via the processor, a text query, computing
a query representation based on computed token-level fin-
gerprints of the text query, and comparing the query repre-
sentation with the window representation using a similarity
function.

13. The computer-implemented method of claim 8,
wherein computing the token-level fingerprint for each of

Aug. 15,2024

the plurality of tokens is based on a plurality of locality-
sensitive hashing (LSH) fingerprints.

14. The computer-implemented method of claim 13,
wherein the LSH fingerprints are computed for a plurality of
subword-units within the received window of text.

15. The computer-implemented method of claim 8,
wherein the plurality of tokens includes a subword unit
token, wherein the subword unit token has a token-level
fingerprint used to compute the window representation.

16. The computer-implemented method of claim 8, updat-
ing the window representation in a rolling scheme when
sliding the window of text to generate a second window
representation.

17. The computer-implemented method of claim 8,
wherein the dense representation for the window of text is
inferred in response to determining that the window repre-
sentation is morphologically similar to a morphological
representation of a list of input queries.

18. (canceled)

19. A computer program product for computing window
representations of text, the computer program product com-
prising a computer-readable storage medium having pro-
gram code embodied therewith, the program code execut-
able by a processor to cause the processor to:

compute a token-level fingerprint for each of a plurality of

tokens in a received window of text;

compute a window representation for a window of text

based on the token-level fingerprints; and

infer a dense representation of the window of text using

the window representation.

20. The computer program product of claim 19, further
comprising program code executable by the processor to
compare the dense representation of the window of text with
a dense representation of an input query to execute a
semantic matching of the input query against the text in the
window.

21. The system of claim 3, wherein the counting bloom
filter is updated to generate a second counting bloom filter
when sliding the window of text to generate the second
window representation, the second counting bloom filter
corresponding to the second window representation.

22. The method of claim 16, wherein the window repre-
sentation comprises a counting bloom filter, wherein the
dense representation of the window of text is generated
using the counting bloom filter, wherein the second window
representation comprises a second counting bloom filter,
wherein a second dense representation is generated using the
second counting bloom filter.

23. The computer program product of claim 20, wherein
comparing the dense representation of the window of text
with the dense representation of the input query comprises
performing a matrix multiplication between a first matrix
corresponding to the dense representation of the window of
text and a second matrix corresponding to the dense repre-
sentation of the input query to generate a set of distances.

#* #* #* #* #*

