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(57) ABSTRACT

According to one embodiment, a method and computer
program product for generating a model including a term
encoder is provided. The embodiment may include training
the model on a training dataset that associates training terms
with first embeddings of the training terms. The training
includes generating, with the term encoder, second embed-
dings from numerical representations of word subunits of
the training terms with an objective of minimizing distances
between the first embeddings and the second embeddings.
The word subunits form part of a predetermined set of word
subunits. The training includes predicting confidence scores
based on the minimized distances. The embodiment may
include deploying the model as part of an executable algo-
rithm to allow a user to infer third embeddings and corre-
sponding confidence scores from any input terms written
based on word subunits of the predetermined set.
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SELF-SUPERVISED TERM ENCODING
WITH CONFIDENCE ESTIMATION

BACKGROUND

[0001] The invention relates in general to the field of
natural language processing (NLP) techniques and, in par-
ticular, word embedding techniques. It is notably directed to
computer-implemented methods and computer program
products relying on models trained on a training dataset that
associates training terms with first embeddings. The models
are trained to learn to: (i) generate second embeddings from
numerical representations of word subunits (e.g., characters)
of the training terms with the objective of minimizing
distances between the first and second embeddings; and (ii)
predict confidence scores based on the minimized distances.
Such models can then be deployed to generate term embed-
dings on-the-fly, something that can for instance be
exploited to update large term embedding matrices or com-
press them.

[0002] Large pre-trained language models are extensively
used in modern NLP systems. Nevertheless, static embed-
dings are still an important building block for industrial-
grade NLP applications. Word embeddings refer to numeri-
cal representations of words. Word embeddings usually
consist of numerical arrays of fixed dimensions, normally
vectors of N components, where N is typically on the order
of hundreds or thousands.

[0003] Entity names such as company names, people,
chemical elements, or other technical terms, can be suitably
embedded using large corpora and algorithms to train static
embeddings, such as the so-called word2vec and GloVe
algorithms. Static embedding methods typically result in
embedding matrices that associate an embedding vector to a
respective word or term of a fixed-size vocabulary V. In
particular, static embedding algorithms can be used to create
high-quality embedding vectors for multiword expressions
such as “support vector machine” or “International Business
Machines Corporation”. In large industrial applications,
where entity names are embedded in addition to single-word
tokens, embedding matrices can easily include tens of mil-
lions of distinct entries and reach tens of gigabytes in size.
[0004] Now, despite the large size of such matrices, the
out-of-vocabulary (OOV) problem can still occur. Le., OOV
terms are terms that are not part of the base vocabulary.
Contrary to language models or n-gram-based models, term
embedding matrices cannot convert OOV terms into respec-
tive embeddings. Rather, previously unseen terms are typi-
cally converted into a same predetermined vector.

[0005] Contextual embedding methods such as the so-
called Elmo embedding method or sentence encoders based
on the BERT model can be used to extract dense represen-
tations for text. Such methods do not require large pre-
trained matrices representing large vocabularies; they rely
on tokenization to provide representations for text not seen
at training time. Unfortunately, sentence encoders do typi-
cally not allow a satisfactory quality of representation to be
achieved for named entities and technical terms. The prob-
lem is especially pronounced for terms drawn from text
containing a large number of named entities (e.g., titles for
financial news) or technical terms as in scientific literature.

SUMMARY

[0006] According to a first aspect, the present invention is
embodied as a computer-implemented method of generating
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a model that includes a term encoder. Overall, the method
revolves around training the model and then deploying the
trained model. In detail, the model is trained on a training
dataset, which associates training terms with first embed-
dings of the training terms. The model is trained to learn to
generate second embeddings and predict confidence scores.
Le., the first embeddings serve as labels for the model to
learn to accordingly generate the second embeddings, where
such embeddings are compressed, numerical representations
of the words. More precisely, the term encoder learns to
generate the second embeddings from numerical represen-
tations of word subunits (e.g., characters) of the training
terms with an objective of minimizing distances between the
first embeddings and the second embeddings. The word
subunits form part of a predetermined set of word subunits.
Interestingly, the model further learns to predict confidence
scores based on the minimized distances. The trained model
is subsequently deployed as part of an executable algorithm
to allow a user to infer third embeddings and corresponding
confidence scores from any input terms written based on
word subunits of the predetermined set.

[0007] The above solution allows a dynamic embedding
model to be obtained based on initial embeddings. The
underlying model can rely on standard artificial neural
network architectures. The trained model can accordingly
infer embeddings, on-the-fly, also for previously unseen
terms, unlike typical static embedding algorithms. By con-
struction, the trained model nevertheless allows the gener-
ated embeddings to be semantically relevant, inasmuch as
the generated embeddings overlap with word subunits as
used in the training terms of the training dataset. Le.,
because of the word subunit decomposition used, the result-
ing embeddings will be meaningful as long as the input
terms are written based on word subunits of the predeter-
mined set.

[0008] By construction, the proposed method provides a
simple solution to the out-of-vocabulary problem of pre-
trained embedding matrices. All the more, the above method
is drastically more efficient than sentence encoders, in terms
of inference latency. Finally, this method allows a confi-
dence score to be obtained, in addition to the embedding
itself. Such confidence scores can be used to accept or reject
the inferred embeddings, something that can notably be
leveraged to update (e.g., compress) embedding matrices. In
other words, the predicted confidence scores allow some
self-supervision.

[0009] In preferred embodiments, the word subunits of the
training terms are characters, whereby the model is trained
to generate the second embeddings based on numerical
representations of characters of the training terms. This, in
practice, makes it possible to maximize the overlap between
unseen terms and the training terms, hence resulting in more
meaningful embeddings, eventually. Moreover, this allows
to reduce the size of the underlying set of basic elements, as
compared to a decomposition based on other types of word
constituents.

[0010] Preferably, the training terms are captured as
tokens, where at least some of said tokens capture respective
sets of multiple words. L.e., each of the sets of multiple
words has been tokenized into a respective, single token.
This way, the first embeddings may for instance reflect
named entities, phrases, or other complex terminologies.
The corresponding word combinations increase the size of
the training dataset. This, in turn, improves the potential
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overlaps (in terms of word subunits such as characters)
between previously unseen terms and the training terms,
which eventually benefits to the inference quality.

[0011] In embodiments, the method further comprises,
prior to training the model, obtaining the training dataset as
an embedding matrix mapping the tokens to the first embed-
dings. Preferably, the method further comprises, prior to
obtaining the embedding matrix, running a natural language
preprocessing pipeline on text data of one or more text
corpora to tokenize the text data. The tokenization process
may advantageously involve a sequence tagging model
designed to identify named entities, so as to tokenize mul-
tiple words corresponding to the name entities into single
tokens.

[0012] In embodiments, the term encoder includes a word
subunit decomposition layer, a word subunit embedding
layer, and one or more trainable layers, wherein the word
subunit decomposition layer is connected to the word sub-
unit embedding layer, itself connected to the one or more
trainable layers. With this architecture in mind, the model is
trained by: identifying the word subunits of the training
terms through the word subunit decomposition layer; obtain-
ing numerical representations of the identified word subunits
through the word subunit embedding layer; and training the
one or more trainable layers for them to learn to generate the
second embeddings from the obtained numerical represen-
tations in accordance with an objective function defining
said objective.

[0013] Preferably, the one or more trainable layers include
several layers that are configured as a multilayer perceptron.
In embodiments, the trainable layers further include at least
one long short-term memory layer interfacing the word
subunit embedding layer with the multilayer perceptron.
[0014] In a first class of embodiments, the model further
includes an estimator, which is connected by the one or more
trainable layers. In this case, training the model further
comprises training the estimator for it to learn to predict the
confidence scores. Two different objective functions may
thus be involved. l.e., said objective function is a first
objective function used to train the term encoder, while the
estimator is trained to learn to predict the confidence scores
in accordance with a second objective function, which
defines an objective of minimizing a difference between the
confidence scores predicted by the estimator and the first
objective function as evaluated based on the minimized
distances.

[0015] In another class of embodiments, the one or more
trainable layers are trained to learn parameters of distribu-
tions, from which respective ones of the first embeddings are
drawn, whereby the second embeddings and the correspond-
ing confidence scores are obtained from the learned param-
eters of the distributions.

[0016] Preferably, the parameters learned for each of said
distributions may include a mean and a variance, where the
mean corresponds to a respective one of the second embed-
dings, while the corresponding confidence score is obtained
based on a negative log-likelihood of each distribution. In
this case, the objective function may be defined based on
negative log-likelihoods of the distributions with respect to
the first embeddings.

[0017] In embodiments, the objective function used to
train the term encoder is designed to define a further
objective, in addition to the objective of minimizing said
distances. This further objective causes to push the second
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embeddings towards embeddings of semantically related
training terms upon training the model.

[0018] Another aspect of the invention concerns infer-
ences performed with the trained model. That is, the present
invention can also be embodied as a computer-implemented
method of inferring embeddings and corresponding confi-
dence scores with a model including a term encoder. This
further method comprises loading a model that has been
trained as described above, prior to executing the loaded
model on input terms written based on word subunits of the
predetermined set to infer third embeddings and correspond-
ing confidence scores.

[0019] The inferred embeddings can then be exploited in
various ways, in accordance with the corresponding confi-
dence scores, as in preferred applications. Basically, such
applications will typically amount to accepting or rejecting
the third embeddings based on the corresponding confidence
scores, as in preferred embodiments.

[0020] In particular, the inferred embeddings and confi-
dence scores can be exploited to update an underlying
embedding matrix. For example, assume that the model is
executed on a set of terms corresponding to entries of a
pre-trained embedding matrix to infer third embeddings and
corresponding confidence scores for this set of terms. Then,
a lossy compression of the pre-trained embedding matrix
can be achieved by pruning entries of the embedding matrix
in accordance with the confidence scores inferred for
embeddings obtained from this set of terms. As a result, least
some of the matrix entries are deleted. Still, the correspond-
ing embeddings can safely be regenerated on-the-fly, thanks
to the trained model, if necessary.

[0021] In other embodiments, the trained model is used to
update an embedding matrix based on new entries thereof.
More precisely, the method further comprises accessing
additional words of an updated version of a vocabulary,
wherein said additional words are not present in the initial
version of the vocabulary. In this case, the model is executed
on the additional words to controllably update entries of an
embedding matrix in accordance with confidence scores
inferred for the embeddings generated for the additional
words.

[0022] Additional aspect of the invention concern com-
puter program products, starting with a computer program
product for generating a model including a term encoder,
consistently with the first aspect of the invention. The
computer program product comprises a computer readable
storage medium having program instructions embodied
therewith, where the program instructions are executable by
processing means of a computerized system to cause the
latter to train the model on a training dataset, for the model
to learn to generate second embeddings from numerical
representations of word subunits of the training terms and
predict confidence scores based on the minimized distances,
as evoked earlier in reference to the first aspect of the
invention.

[0023] Alternatively, or in addition, the computer program
product may be designed for inferring embeddings and
corresponding confidence scores. In that case, the program
instructions are executable to cause to load a model trained
as described above and execute the loaded model on input
terms to infer embeddings and corresponding confidence
scores.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0024] These and other objects, features and advantages of
the present invention will become apparent from the fol-
lowing detailed description of illustrative embodiments
thereof, which is to be read in connection with the accom-
panying drawings. The illustrations are for clarity in facili-
tating one skilled in the art in understanding the invention in
conjunction with the detailed description. In the drawings:
[0025] FIG. 1 is a diagram illustrating selected compo-
nents of a computerized system for training models and
accordingly performing inferences, as in embodiments;
[0026] FIG. 2 is a flowchart illustrating high-level steps of
a method of training and exploiting a term encoder model,
according to embodiments;

[0027] FIG. 3 is a diagram illustrating how a trained model
can be exploited to update an embedding matrix, as in
embodiments;

[0028] FIGS. 4 and 5 show architectures of two classes of
term encoder models, as involved in embodiments; and
[0029] FIG. 6 schematically represents a general-purpose
computerized system, suited for implementing one or more
method steps as involved in embodiments of the invention.
[0030] The accompanying drawings show simplified rep-
resentations of devices or parts thereof, as involved in
embodiments. Similar or functionally similar elements in the
figures have been allocated the same numeral references,
unless otherwise indicated.

[0031] Computerized methods and computer program
products embodying the present invention will now be
described, by way of non-limiting examples.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

[0032] The following description is structured as follows.
General embodiments and high-level variants are described
in section 1. Section 2 addresses particularly preferred
embodiments. Section 3 concerns technical implementation
details. Note, the present method and its variants are col-
lectively referred to as the “present methods”. All references
Sn refer to methods steps of the flowchart of FIG. 2 (some
of these steps are also reflected in the diagram of FIG. 3),
while numeral references pertain to devices, components,
and concepts, as involved in embodiments of the present
invention.

1. General Embodiments and High-Level Variants

[0033] Inreferenceto FIG. 2, a first aspect of the invention
is now described. This aspect concerns a computer-imple-
mented method of generating a model including a term
encoder. For this reason, this model is sometimes referred to
as a “term encoder model” in the present document.
[0034] This method essentially revolves around training
the model and then deploying the model, as reflected in step
S60 and step S70 of the flowchart of FIG. 2.

[0035] The model is trained S60 on a training dataset 14
that associates training terms 145 with respective embed-
dings 146 of the training terms. In the following, such
embeddings are referred to as “first embeddings”. The first
embeddings are assumed to have been obtained with any
suitable term embedding method, such as a static embedding
method. The training dataset may for instance be initially
formed S30 as an embedding matrix such as shown in FIG.
3. As further seen in FIG. 3, the training terms much
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preferably include multiple words, tokenized into single
tokens, for reasons discussed later.

[0036] The model is notably trained to learn to generate
embeddings (called second embeddings) with the objective
of minimizing distances between the first embeddings 146
and the second embeddings. Note, the concept of minimized
distance implies that the first embeddings 146 and the
second embeddings are same-dimensional arrays (typically
vectors) of numbers representing respective training terms
145, so as to make it possible to compute meaningful
distances between the arrays. As per this objective, the
model learns to reconstruct embeddings that are close to the
first embeddings, as also illustrated in FIGS. 4 and 5.
[0037] Interestingly, the second embeddings are generated
by the term encoder from numerical representations of word
subunits of the training terms 145, where the word subunits
form part of a predetermined set of word subunits. Here, the
word subunits are subword components, i.e., word constitu-
ents, which can notably be characters, syllables, or closely
related concepts (e.g., moras), morpheme components (e.g.,
roots and affixes), or any other suitable language subunits
having a smaller granularity than the target words. Most
efficient, however, is to rely on characters, as in preferred
embodiments discussed later in detail.

[0038] Moreover, another interesting feature of the pro-
posed method is that the model is further trained to predict
confidence scores for the second embeddings, based on the
minimized distances. That is, not only the model makes it
possible to infer embeddings but, in addition, the model
predicts a confidence score for any embedding inferred.
Being able to predict such confidence scores is key to
applications as contemplated herein.

[0039] The trained model is subsequently deployed S70 as
part of an executable algorithm, with a view to allowing a
user 4 to infer S80 further embeddings 161 (called third
embeddings) and corresponding confidence scores 162. By
construction, the deployed model allows third embeddings
to be inferred S80 from any input term 15, whether previ-
ously unseen or not. Because of the word subunit decom-
position used, the resulting embeddings will be meaningful
as long as the input terms 15 are written based on word
subunits of the predetermined set.

[0040] Comments are in order. First, according to the
above terminologies, the first embeddings correspond to
target embeddings, which are used to train the model. The
second embeddings are embeddings that are reconstructed
during the training phase, i.e., embeddings as formulated
during the forward pass. The third embeddings are embed-
dings generated at a later stage, during the inference phase.
[0041] The model trained is a cognitive model, which
includes a term encoder. The latter generates embeddings
and may further be used to generate confidence scores, as in
embodiments. That is, the encoder may output additional
data that are used to predict the confidence scores. Alterna-
tively, the model may additionally include an estimator, on
top of the encoder, where the estimator is trained to generate
confidence scores, as in other embodiments.

[0042] The term encoder is basically a text encoder (also
referred to as a string encoder) and can be regarded as a
specific type of feature extractor. The term encoder is trained
in a supervised manner, using input data-label pairs consist-
ing of training terms (the input data) and the corresponding
target embeddings (the corresponding labels), here referred
to as the first embeddings. Once deployed, the algorithm
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works by inferencing embeddings from input text (i.e.,
strings). This makes it possible for users to generate embed-
dings and corresponding scores from previously unseen
terms (i.e., words or sets of words), which do not belong to
the training dataset 14. Alternatively, the model may also be
run on the same training dataset or another dataset with a
view to updating this dataset, i.e., to perform a lossy
compression of this dataset or easily update this dataset for
new entries, as in embodiments discussed later.

[0043] The proposed solution allows a dynamic embed-
ding model to be obtained based on initial embeddings. The
trained model can accordingly infer embeddings, on-the-fly,
also for previously unseen terms, unlike typical static
embedding algorithms. By construction, the trained model
nevertheless allows the generated embeddings to be seman-
tically relevant, inasmuch as the generated embeddings
overlap with word subunits as used in the training terms of
the training dataset 14. Moreover, while the objective used
effectively pushes the generated embeddings toward the
initial embeddings upon training the model, this objective
may possibly be augmented with an additional objective
ensuring relevant words representations in contexts, as in
embodiments discussed below.

[0044] In general, the present models can be implemented
using standard neural network architectures. By construc-
tion, the proposed method provides a simple solution to the
out-of-vocabulary problem of pre-trained embedding matri-
ces. All the more, this method is drastically more efficient
than sentence encoders, in terms of inference latency.
Finally, the proposed approach allows a confidence score to
be obtained, in addition to the embedding itself, something
than can be leveraged to update (e.g., compress) embedding
matrices, as in embodiments discussed herein. Owing to the
confidence scores predicted, the model can be regarded as a
self-supervised term encoder model.

[0045] All this is now described in detail, in reference to
particular embodiments of the invention. To start with, the
word subunits considered are preferably characters, as noted
earlier. In that case, the model is trained S60 to infer the
second embeddings based on numerical representations of
characters of the training terms. This, in practice, makes it
possible to maximize the overlap between unseen terms and
the training terms, hence resulting in more meaningful
embeddings, eventually. Moreover, this allows to reduce the
size of the underlying set of basic elements, as compared to
a decomposition based on other types of word constituents.
For instance, there are about 100,000 possible syllables in
English language, which must be compared to 26 letters in
the English alphabet. Of course, the training and input terms
will typically include additional characters, such as digits
and other symbols. The characters used may for instance be
the 95 printable ASCII characters or a useful subset of the
unicode characters, e.g., including at least basic Latin char-
acters, as well as one or more additional sets, such as Latin-1
Supplement, Latin Extended-A to G, spacing modifier let-
ters, phonetic extensions, combining marks (i.e., combining
characters), unicode symbols, general punctuation, super-
scripts and subscripts, currency symbols, letter-like sym-
bols, number forms, mathematical symbols and other tech-
nical symbols, etc.

[0046] In practice, the training terms 145 are captured as
tokens. Each token corresponds to one or more words. Some
of the tokens may capture respective sets of multiple words.
That is, each set of multiple words (e.g., “supervised learn-
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ing”) is tokenized into a respective, single token (e.g.,
“supervised_learning”). So, the training set may advanta-
geously include multiword expressions. So, the terminology
“terms” as used in “training terms” and “input terms” is to
be understood in a broad sense. Such terms can be any
separable word, or group of separable words, phrase, includ-
ing technical terms (scientific terminologies such as chemi-
cal terminologies), zip codes, entity names, phone numbers,
etc. Accordingly, some of the tokens of the training set may
correspond to multiple words, or combinations of words,
digits, and/or other signs, which have been tokenized into
single tokens.

[0047] Forexample, the terminologies “machine learning”
and “San Francisco” may advantageously be tokenized into
“machine_learning” and “san_francisco” instead of, or in
addition to, two separate tokens (i.e., “machine”+*“leaning”
and “san”+“francisco”). The advantages of using first
embeddings having entries corresponding to terms, named
entities, phrases or other complex terminologies, is that the
size of the training dataset (e.g., a static embedding matrix)
will be substantially larger than that of training sets based on
individual words only. This, in turn, improves the overlap (in
terms of word subunits such as characters) between previ-
ously unseen terms and the training terms. So, by enlarging
the training dataset with multiword tokens, the size of the
training data can be substantially increased, which results in
increasing the inference quality.

[0048] In that respect, and as seen in FIG. 2, the present
methods may include a preliminary step of obtaining S30 the
training dataset 14 as an embedding matrix 14 mapping the
tokens 145 to the first embeddings 146. To that aim, a natural
language preprocessing pipeline may initially be run S20 on
text data of one or more text corpora to tokenize the text
data. One may for example use a static embedding algorithm
to obtain S30 the training set. E.g., one may train high-
quality embeddings for tokens using static embedding algo-
rithms such as word2vec or GloVe. Use can advantageously
be made of a sequence tagging model designed to identify
named entities, so as to tokenize multiple words correspond-
ing to such name entities into single tokens. As a result, at
least some of the tokens of the training set 14 correspond to
multiple words. The latter are tokenized into single tokens,
thanks to the sequence tagging model. The latter can notably
be designed to recognize named entities such as cities,
proper names, companies, products, or domain-specific ter-
minologies, as well as compound words. In general, a
sequence tagging model will be able to group individual
words, which together have a special meaning. For com-
pleteness, the natural language preprocessing pipeline may
include additional modules to clean and normalize the text
data, prior to tokenizing the data.

[0049] The following discusses aspects related to pre-
ferred neural network architectures of the present models. In
general, such models can be implemented with standard
network architectures, e.g., based on long short-term
memory (LSTM), gated recurrent units (GRUs), convolu-
tional neural networks (CNNs), and/or transformers. As
illustrated in FIGS. 4 and 5, the term encoder may include
a word subunit decomposition layer, a word subunit embed-
ding layer, and one or more trainable layers. The word
subunit decomposition layer is connected to the word sub-
unit embedding layer, itself connected to the one or more
trainable layers. In the examples of FIGS. 4 and 5, the word
subunits are assumed to be characters, as also assumed in the
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following, for the sake of illustration. Thus, in FIGS. 4 and
5, the word subunit decomposition layer is a character
decomposition layer, while the word subunit embedding
layer is a character embedding layer.

[0050] Using such a network architecture, the model is
trained S60 by identifying the characters of the training
terms 145 through the character decomposition layer. Next,
the character embedding layer converts the identified char-
acters into numerical representations. Finally, the trainable
layers are trained to learn to generate the second embeddings
from the obtained numerical representations in accordance
with an objective function, which defines the objective of
minimizing distances between the first and second embed-
dings. In practice, the training operates by optimizing the
objective function, which may be defined as, e.g., a loss
function, a reward function, or the likes. Thus, the objective
function may have to be minimized, maximized, or other-
wise optimized (this depending on its exact definition) in
respect of the training dataset 14.

[0051] The second embeddings are preferably obtained as
normalized vectors (i.e., one-dimensional arrays of num-
bers, having a unit norm). Such vectors are generated by the
trainable layers of the model from the numerical represen-
tations inputted by the character embedding layer. During
the training phase, the term encoder learns its own param-
eters by minimizing distances between the second (i.e.,
reconstructed) embeddings and the first embeddings 146.
Equivalently, one may also maximize a similarity between
the first and second embeddings, where the similarity S is
defined as the converse of a distance D, preferably a
normalized distance d, such as the cosine distance. The
similarity can for instance be defined as S=1/(1+D) or as
S=1-d. For example, the term encoder can be trained to
generate embedding vectors that have a close cosine simi-
larity with the first embeddings.

[0052] In embodiments, the trainable layers include sev-
eral layers, which are configured as a multilayer perceptron
(noted MLP in FIGS. 4 and 5). Moreover, the trainable
layers may advantageously include at least one LSTM layer,
arranged so as to interface the character embedding layer
with the multilayer perceptron. In the examples of FIGS. 4
and 5, the LSTM layer produces successive outputs h;-h,, at
time steps corresponding here to the successively obtained
representations e,-¢; of the successively added characters
¢,-¢c;. Le., each output h, is produced in response to the
successively produced ;. Note, the outputs h,-h, all have the
same dimensions as the embeddings & as eventually pro-
duced by the term encoder. In the examples of FIGS. 4 and
5, only the last output h; is fed to the MLP. In variants, an
average of the outputs h,-h,may be used instead of h,.

[0053] In addition, the model typically includes a normal-
ization layer, as assumed in FIGS. 4 and 5. Various other
architectures can be contemplated. In general, the present
cognitive models can be implemented with standard
LSTMs, GRUs, CNNs, and/or transformers.

[0054] In a first class of embodiments, the model further
includes one or more subsequent layers defining an estima-
tor, to generate the desired confidence score predictions
based on the minimized distances, as seen in FIG. 4. In this
example, the estimator is connected by the trainable layers
(in fact the MLP). In that case, the training involves two
stages, one to train the term encoder, and another one to train
the estimator for it to learn to predict the confidence scores.
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[0055] The “stop gradient” seen in FIG. 4 delimits respec-
tive portions of the model. The estimator is typically opti-
mized using a second objective function, distinct from the
first objective function. The second objective function may
for instance define an objective of minimizing a difference
between the confidence scores € generated by the estimator
and the first objective function as evaluated based on the
minimized distances. E.g., while the loss function L used
as the first objective function may cause to minimize the
cosine distance 1—cos (€, e) between each generated embed-
ding & and each respective target embedding e, the second
objective function may be defined as a loss L,, causing to
minimize the squares of the distances between each confi-
dence score € and the corresponding cosine distance, as
suggested in FIG. 4. Note, with this definition, the confi-
dence score € measures a discrepancy, i.e., an error between
the reconstructed embedding and the target embedding. L.e.,
the larger the score, the lesser the confidence, a priori.
[0056] Remarkably, the estimator may consist of a single
logistic regression layer. That is, a simple logistic regression
can be sufficient to provide a confidence score, making the
overall model lightweight and effective. This means that
given an embedding vector (a point on the unit sphere 16,
see FIG. 3), the estimator outputs a scalar corresponding to
the prediction confidence (e.g., normalized to the range [0 to
1)), based on the inferred embedding é. I.e., € is computed
as a logistic function of &. Beyond regressions, however,
other prediction models can more generally be contem-
plated, calling for a tradeoff between quality of prediction
and inference speed.

[0057] FIG. 5 illustrates another class of embodiments,
where embeddings and corresponding confidence scores are
generated from distribution parameters. The network archi-
tecture remains generally the same. However, the trainable
layers are now trained to learn parameters of distributions,
from which respective ones of the first embeddings 146 are
drawn. The second embeddings and the corresponding con-
fidence scores are obtained from the learned parameters of
the distributions. Various types of parameters can be relied
on, depending on the distribution definition. For example,
where two-parameter distribution are used, the parameters
will typically be the average and the standard deviation (or
equivalently the variance). Three-parameter distributions
will normally be defined based on the average, standard
deviation, and skewness. A fourth parameter can be the
kurtosis, and so on. More generally, the distributions may be
defined in terms of moments or cumulants, from which the
second embeddings and the corresponding confidence
scores can be obtained.

[0058] Assuming that the distributions are normal distri-
butions, the parameters learned for each distribution include
a mean and a variance (or the like). Preferably, one uses the
log-variance instead of the variance, to make it easier to
reparametrize the gradients upon training the model. In other
words, the term encoder can be trained to predict the mean
and the log-variance of a distribution (assumed to be nor-
mal), from which an initial embedding has been drawn. On
inferencing, the mean of a predicted distribution will cor-
respond to the predicted word embedding, while the log-
likelihood of the distribution can be used to estimate the
quality of the predicted word embedding (i.e., the error).
[0059] In practice, the log-likelihood is highly correlated
with the quality of the prediction, e.g., the cosine similarity
between the generated and the initial embedding. Since each
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pair of parameters learned defines a respective distribution,
the trained model actually predicts a distribution, whose
mean corresponds to a word embedding, while the log-
likelihood can be used as a proxy to estimate the model’s
uncertainty. As further suggested in FIG. 5, the objective
function may be defined based on negative log-likelihoods
of the distributions with respect to the first embeddings 146.
[0060] Several variants to FIGS. 4 and 5 can be contem-
plated. In particular, the two approaches may be combined.
For example, the confidence scores may be computed as a
combination of the scores obtained in accordance with
FIGS. 4 and 5, e.g., as an average of the score of a logistic
regression model and the log-likelihood of a distribution
from which an embedding is derived.

[0061] So far, the term encoder is assumed to be trained in
accordance with a single objective, designed to push the
second embeddings toward the first embeddings. Now, the
objective function may possibly be supplemented with an
auxiliary objective, to push the second embeddings towards
embeddings of semantically related training terms 145 upon
training the model. That is, the objective function used to
train the term encoder may be formulated as a dual function.
The additional objective makes it more likely that words that
are closer in the vector space are also similar in meaning.
Note, this additional objective should be distinguished from
the additional objective function used for the estimator of
FIG. 4.

[0062] The above description focused on the training of
the term encoder model. Another aspect of the invention is
now described in detail, which concerns inferences made
with the term encoder model and how such inferences can be
exploited for practical purposes. This additional aspect is
primarily described in reference to FIGS. 2 and 3. It con-
cerns a computer-implemented method of inferring embed-
dings and corresponding confidence scores with a model
including a term encoder.

[0063] To that aim, the method first loads the trained
model. The latter is assumed to have been trained in accor-
dance with a method as described earlier in respect of the
first aspect of the invention. I.e., this model has been trained
on a training dataset 14 associating training terms 145 with
first embeddings 146, so as to learn to generate second
embeddings and predict corresponding confidence scores.
That is, the model is assumed to have learned its own
parameters by generating second embeddings from numeri-
cal representations of word subunits (preferably characters)
of the training terms 145, while additionally predicting
corresponding confidence scores. The latter are predicted
based on distances as minimized between the first embed-
dings and the second embeddings, as per the objective
function used to train the term encoder. Again, the training
terms 145 are preferably assumed to include multiword
expressions.

[0064] Next, the loaded model is executed S80 on given
input terms 15, which are assumed to be written based on
word subunits as used in the training terms. The goal is to
infer third embeddings 161 and corresponding confidence
scores 162, quickly and efficiently, for each input term of
interest to the user.

[0065] In turn, the method may accept (S90: Yes) or reject
(S890: No) the third embeddings 161 based on the corre-
sponding confidence scores 162, as also illustrated in FIG. 3.
Note, this step may be performed fully automatically, based
on the confidence scores 162 obtained. In variants, this may
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be subjected to a user approval. In other variants, this
process S90 may involve a rewarding process, as in rein-
forcement learning.

[0066] Assume that an inference is performed at step S80
based on a previously unseen input term “semi-supervised
learning”, while the training terms included tokens capturing
such concepts as “machine learning”, “supervised learning”,
and “unsupervised learning”. In that case, the overlap, in
terms of word subunits (e.g., characters), between the input
term (“semi-supervised learning”) and embeddings as
already learned for neighboring terms, will likely results in
an embedding that is close to embeddings for the neighbor-
ing terms. In addition, the predicted confidence score will
likely be low (indicating a small error, a priori). Thus, the
quality check performed at step S90 will likely accept the
inferred embedding, as assumed in FIG. 2. However, an
embedding inferred for a very rare term (e.g., “blather-
skite”), not well represented in the training set, may possibly
be accompanied by a high score value, which is above an
acceptable threshold. In that case, the quality check per-
formed at step S90 will likely reject the inferred embedding.
This mechanism is also illustrated in FIG. 3.

[0067] Various applications can be contemplated, starting
with applications aiming at updating the underlying embed-
ding matrix. That is, the model may be executed S80 on a set
of terms corresponding to entries of a pre-trained embedding
matrix 14 to infer third embeddings 161 and corresponding
confidence scores 162 for this set of terms. Next, a lossy
compression of the pre-trained embedding matrix 14 may be
performed S80-S100 by pruning entries of the embedding
matrix in accordance with the confidence scores inferred. As
a result, at least some of the entries of the embedding matrix
are deleted S100, in accordance with their respective con-
fidence scores. That is, the present methods can be used as
a lossy compressor to selectively keep only those embed-
dings that cannot be faithfully reproduced by the term
encoder. Thus, as illustrated in FIG. 3, the quality check
performed at step S90 may decide to solely keep in memory
the embeddings for which the projector will introduce an
error higher than a given threshold. The embeddings corre-
sponding to the deleted entries can still be re-regenerated
on-the-fly, if needed. This approach gives the flexibility to
balance between the memory required to store extremely
large embedding matrices and the computational efforts
required to reproduce the embeddings in a lossy manner.
[0068] Further factors may possibly be considered, in
addition to the quality of the reconstructed embeddings,
starting with the rarity of the terms concerned. E.g., the
present methods may maintain statistics as to the training
terms or sort the matrix rows in accordance with frequencies
at which the corresponding embeddings are used. In turn,
this information can be used to reduce the embedding matrix
size by deleting those rarely used entries for which the term
encoder produces acceptable embeddings.

[0069] Apart from lossy compressions, the present meth-
ods may also be used to merely update an embedding matrix.
For example, the loaded model may be fed with additional
words of an updated version of a vocabulary, where these
additional words are not present in the initial version of the
vocabulary. The latter is assumed to be associated with a
given embedding matrix. In that case, executing the model
on the additional words makes it possible to controllably
update S90-S100 entries of the associated embedding matrix
14, in accordance with confidence scores inferred for the
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embeddings generated for the additional words. lLe., the
model is here used to extend an existing pre-trained matrix
with additional entries, in a controlled manner.

[0070] Further applications can be contemplated. For
example, irrespective of the quality and complexity of the
initial embedding algorithm used, the present approach can
be used to create simpler embedding models, which are
more efficient than pre-trained text encoders as typically
used to compute dynamic embeddings. For example, a
complex text encoder may be used to produce word embed-
dings for multiword expressions. This complex text encoder
may then be used to produce high-quality embeddings,
albeit at a high computational cost. Now, the present
approach may judiciously be used to train inexpensive
surrogate models for specific lexical fields. That is, one may
initially create S30 an embedding matrix subset, the entries
of' which are actually sampled from a lexical field of interest.
Next, using embeddings as initially obtained with the large
model, one may train S60 a lightweight, surrogate model, fit
to the lexical field of interest.

[0071] Further aspects of the invention concern computer
program products, whether for generating a term encoder
model and/or for inferring embeddings and corresponding
confidence scores. In both cases, the computer program
products comprise a computer readable storage medium
having program instructions embodied therewith. Such pro-
gram instructions are executable by processing means of a
computerized system, e.g., a computerized unit 101 such as
shown in FIG. 6. In operation, such instructions cause the
computerized system to train and deploy the model, as
described earlier in respect of the first aspect of the inven-
tion. Alternatively, or in addition, such instructions may
cause the computerized system to load and execute the
model, in accordance with the second aspect of the invention
described above. Computer program products are further
discussed in Sect. 3.

[0072] The present methods can, in principle, be imple-
mented on any suitable computerized system. For example,
FIG. 1 illustrates a network 5 involving several computers
101 (such as shown in FIG. 6) and a server 2. The server 2
is here assumed to interact with clients 4, who may be
natural persons (interacting via personal computers 3), pro-
cesses, or machines. Each computer 101 is configured to
read data from, and write data to, the memory unit of the
server computer 2 in this example. Client requests are
managed by the server 2, which may notably be configured
to assign a given user request to one or more of the
computers 101, with a view to training and/or executing a
term encoder model, amongst other tasks. The network 5
may notably be configured as a distributed computing sys-
tem, possibly an edge computing system. Other architectures
can be contemplated, involving one or more general-purpose
computers. In variants, the computer network 5 may be
configured as a composable disaggregated infrastructure,
which may further include hardware acceleration devices,
e.g., in-memory compute (IMC) devices, application-spe-
cific integrated circuits (ASICs), and/or field-programmable
gate arrays (FPGAs).

[0073] The above embodiments have been succinctly
described in reference to the accompanying drawings and
may accommodate a number of variants. Several combina-
tions of the above features may be contemplated. Examples
are given in the next sections.
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2. Particularly Preferred Embodiments

2.1 Preferred Flow (FIG. 2)

[0074] FIG. 2 shows a preferred flow of operations, in
which a text corpora 10 is accessed at step S10 and subjected
to some standard NLP preprocessing steps S20, to clean and
normalize the text data. In addition, single words and
multiple word combinations are tokenized S20. Use is made
of a sequence tagging model to identify named entities, so
as to tokenize multiple words corresponding to name entities
into single tokens. An embedding matrix is subsequently
formed S30 from the preprocessed text data 12 resulting
from step S20. At step S40, the term encoder model (still
untrained) is loaded in the main memory of a computerized
system. At step S50, a training dataset is formed as input-
output pairs from the static embedding matrix, and subse-
quently loaded in the main memory of the computerized
system, the memory permitting. In variants, a stepwise
training strategy can be relied on. The model is trained at
step S60, so as to learn to generate second embeddings and
confidence scores from the training dataset, in accordance
with one or more objective functions, as discussed in Sect.
1. The trained model is then deployed at step S70, as part of
an executable algorithm.

[0075] The deployed model is then executed at step S80,
with a view to updating S100 an embedding matrix 14 based
on the confidence scores obtained upon performing infer-
ences on input terms of the embedding matrix. The model
may for instance be executed on each input term (i.e., each
entry) of the same static embedding matrix 14 as used to
form the training dataset. The aim is to reconstruct respec-
tive embeddings and generate corresponding confidence
scores. Next, the embedding matrix is pruned S100 by
deleting any entry for which the confidence score is accept-
able (S90: Yes). Conversely, entries for which the confidence
score is unfavorable should rather be kept (S90: No) in
memory.

2.2 Diagram of FIG. 3

[0076] A similar scheme may be used to update a target
embedding matrix, whether related to the initial matrix 14 or
not. In the example of FIG. 3, the target matrix is assumed
to be the same as the initial embedding matrix 14. The
trained model is executed S80 on previously unseen terms
15 to generate respective embeddings 161 and confidence
scores 162. The target matrix 14 is then updated S90 in
accordance with the confidence scores obtained. I.e., terms
and embeddings for which the confidence scores are accept-
able are added to the matrix, while other terms are discarded.

[0077] Indetail, FIG. 3 assumes that a large corpus of raw
text 10 is collected and pre-processed S20 using NLP
pipelines to perform simple operations such as cleaning,
lower-casing, and other normalization operations. Addition-
ally, an information-extraction pipeline is used to recognize
named entities, such as locations, people, company, and
product names, as well as technical terms. This makes it
possible to tokenize multiword expressions, in addition to
single words. After preprocessing S20, a static embedding
algorithm is used S30 to extract high-quality representations
for both single tokens and multiword tokens. An embedding
matrix is accordingly obtained S30. While such an embed-
ding matrix may typically contain millions of entries in
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industrial applications, it will still suffer from the out-of-
vocabulary issue, hence the benefit of the proposed
approach.

[0078] As further illustrated in FIG. 3, inferences are
performed S80 on previously unseen terms 15 (i.e., terms
not present in the original corpora) to project the resulting
embeddings in the embedding space trained over the cor-
pora. That is, given some input text 15, the character-based
model is used to infer a vector corresponding to text that best
represents this term in the embedding space trained over the
corpus. Unlike sentence encoders, the model actually infers
S80 both an embedding 161 and a confidence score 162,
where the latter allows a simple, yet effective quality assur-
ance of the predicted projection to be performed S90.

[0079] Similarly, any downstream system may decide to
use the inferred representation or ignore it if the confidence
obtained is too low for the downstream task.

2.3 Preferred Model Architectures

[0080] Suitable character-based models can be trained
using different training objectives. A cosine distance is used
in the model shown in FIG. 4 (call it the “first model”), while
the model (“second model”) of FIG. 5 relies on the negative
log-likelihood of the predicted distributions. The main dif-
ference resides in the interpretation of the produced outputs
and the computation of the quality of the projected embed-
dings.

[0081] The first model predicts a word embedding vector
and optimizes the cosine similarity distance between the
predicted embedding and the original embeddings (i.e., the
word embedding to be learned). Note, one may, in principle,
directly optimize against the mean squared error. However,
in practice, better results are obtained in terms of cosine
similarity. Overall, the encoder shown in FIG. 4 allows a
multivariate regression task. Still, this encoder does not
permit to estimate the prediction quality on inferencing. This
is problematic because it may sometimes be preferable to
rely on a predetermined, out-of-vocabulary embedding
rather than an inaccurate embedding. Therefore, the first
model further includes an estimator to predict the error (i.e.,
based on the cosine similarity). This estimator involves a
logistic regression between the reference and predicted
embeddings, using only the predicted embedding as input.
To train this estimator, one may for instance minimize the
mean square error between the predicted error and the cosine
similarity distance from the previous step. A standard gra-
dient descent can be applied for the first objective function
(first loss) and for the second objective function (second
loss), to stop the gradient propagation at the predicted
embedding. A nice property of the above setup is that the
error is independently estimated: it can be retrained regu-
larly without retraining the whole model. For example, this
approach makes it possible to train one or multiple models
to better estimate the error, given the predicted embeddings.

[0082] The second model uses a probabilistic interpreta-
tion; it predicts the parameters of a normal distribution: the
mean and the log-variance. I.e., the second model predicts a
distribution from which a target word embedding is drawn.
The second model is trained using the negative log-likeli-
hood. On inferencing, the mean of the distribution corre-
sponds to the predicted word embedding, and the log-
likelihood reflects the quality of the predicted word
embedding (i.e., the error).
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[0083] In both cases, the predicted error is preferably
normalized to the range [0,1] using the minimum and
maximum values of the error or the log-likelihood of the
samples in the training set. This results in a better under-
standing of the model’s uncertainty and thus, allows better
decisions to be made in respect of the predicted embeddings.
Overall, the first model was found to provide better results.

3. Technical Implementation Details

[0084] Various aspects of the present disclosure are
described by narrative text, flowcharts, block diagrams of
computer systems and/or block diagrams of the machine
logic included in computer program product (CPP) embodi-
ments. With respect to any flowcharts, depending upon the
technology involved, the operations can be performed in a
different order than what is shown in a given flowchart. For
example, again depending upon the technology involved,
two operations shown in successive flowchart blocks may be
performed in reverse order, as a single integrated step,
concurrently, or in a manner at least partially overlapping in
time.

[0085] A computer program product embodiment (CPP
embodiment or CPP) is a term used in the present disclosure
to describe any set of one, or more, storage media (also
called mediums) collectively included in a set of one, or
more, storage devices that collectively include machine
readable code corresponding to instructions and/or data for
performing computer operations specified in a given CPP
claim. A storage device is any tangible device that can retain
and store instructions for use by a computer processor.
Without limitation, the computer readable storage medium
may be an electronic storage medium, a magnetic storage
medium, an optical storage medium, an electromagnetic
storage medium, a semiconductor storage medium, a
mechanical storage medium, or any suitable combination of
the foregoing. Some known types of storage devices that
include these mediums include: diskette, hard disk, random
access memory (RAM), read-only memory (ROM), erasable
programmable read-only memory (EPROM or Flash
memory), static random-access memory (SRAM), compact
disc read-only memory (CD-ROM), digital versatile disk
(DVD), memory stick, floppy disk, mechanically encoded
device (such as punch cards or pits/lands formed in a major
surface of a disc) or any suitable combination of the fore-
going. A computer readable storage medium, as that term is
used in the present disclosure, is not to be construed as
storage in the form of transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide,
light pulses passing through a fiber optic cable, electrical
signals communicated through a wire, and/or other trans-
mission media. As will be understood by those of skill in the
art, data is typically moved at some occasional points in time
during normal operations of a storage device, such as during
access, de-fragmentation, or garbage collection, but this
does not render the storage device as transitory because the
data is not transitory while it is stored.

[0086] Referring to FIG. 6, computing environment 100
contains an example of an environment for the execution of
at least some of the computer code involved in performing
the inventive methods, such as training, deploying, and
performing inferences with the present models 200. In
addition to block 200, computing environment 100 includes,
for example, computer 101, wide area network (WAN) 102,
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end user device (EUD) 103, remote server 104, public cloud
105, and private cloud 106. In this embodiment, computer
101 includes processor set 110 (including processing cir-
cuitry 120 and cache 121), communication fabric 111,
volatile memory 112, persistent storage 113 (including oper-
ating system 122 and block 200, as identified above),
peripheral device set 114 (including user interface (UI),
device set 123, storage 124, and Internet of Things (IoT)
sensor set 125), and network module 115. Remote server
104 includes remote database 130. Public cloud 105
includes gateway 140, cloud orchestration module 141, host
physical machine set 142, virtual machine set 143, and
container set 144.

[0087] COMPUTER 101 may take the form of a desktop
computer, laptop computer, tablet computer, smart phone,
smart watch or other wearable computer, mainframe com-
puter, quantum computer or any other form of computer or
mobile device now known or to be developed in the future
that is capable of running a program, accessing a network,
or querying a database, such as remote database 130. As is
well understood in the art of computer technology, and
depending upon the technology, performance of a computer-
implemented method may be distributed among multiple
computers and/or between multiple locations. On the other
hand, in this presentation of computing environment 100,
detailed discussion is focused on a single computer, specifi-
cally computer 101, to keep the presentation as simple as
possible. Computer 101 may be located in a cloud, even
though it is not shown in a cloud in FIG. 1. On the other
hand, computer 101 is not required to be in a cloud except
to any extent as may be affirmatively indicated.

[0088] PROCESSOR SET 110 includes one, or more,
computer processors of any type now known or to be
developed in the future. Processing circuitry 120 may be
distributed over multiple packages, for example, multiple,
coordinated integrated circuit chips. Processing circuitry
120 may implement multiple processor threads and/or mul-
tiple processor cores. Cache 121 is memory that is located
in the processor chip package(s) and is typically used for
data or code that should be available for rapid access by the
threads or cores running on processor set 110. Cache memo-
ries are typically organized into multiple levels depending
upon relative proximity to the processing circuitry. Alterna-
tively, some, or all, of the cache for the processor set may be
located off chip. In some computing environments, proces-
sor set 110 may be designed for working with qubits and
performing quantum computing.

[0089] Computer readable program instructions are typi-
cally loaded onto computer 101 to cause a series of opera-
tional steps to be performed by processor set 110 of com-
puter 101 and thereby effect a computer-implemented
method, such that the instructions thus executed will instan-
tiate the methods specified in flowcharts and/or narrative
descriptions of computer-implemented methods included in
this document (collectively referred to as the inventive
methods). These computer readable program instructions are
stored in various types of computer readable storage media,
such as cache 121 and the other storage media discussed
below. The program instructions, and associated data, are
accessed by processor set 110 to control and direct perfor-
mance of the inventive methods. In computing environment
100, at least some of the instructions for performing the
inventive methods may be stored in block 200 in persistent
storage 113.

Aug. 29, 2024

[0090] COMMUNICATION FABRIC 111 is the signal
conduction paths that allow the various components of
computer 101 to communicate with each other. Typically,
this fabric is made of switches and electrically conductive
paths, such as the switches and electrically conductive paths
that make up busses, bridges, physical input/output ports and
the like. Other types of signal communication paths may be
used, such as fiber optic communication paths and/or wire-
less communication paths.

[0091] VOLATILE MEMORY 112 is any type of volatile
memory now known or to be developed in the future.
Examples include dynamic type random access memory
(RAM) or static type RAM. Typically, the volatile memory
is characterized by random access, but this is not required
unless affirmatively indicated. In computer 101, the volatile
memory 112 is located in a single package and is internal to
computer 101, but, alternatively or additionally, the volatile
memory may be distributed over multiple packages and/or
located externally with respect to computer 101.

[0092] PERSISTENT STORAGE 113 is any form of non-
volatile storage for computers that is now known or to be
developed in the future. The non-volatility of this storage
means that the stored data is maintained regardless of
whether power is being supplied to computer 101 and/or
directly to persistent storage 113. Persistent storage 113 may
be a read only memory (ROM), but typically at least a
portion of the persistent storage allows writing of data,
deletion of data and re-writing of data. Some familiar forms
of persistent storage include magnetic disks and solid-state
storage devices. Operating system 122 may take several
forms, such as various known proprietary operating systems
or open-source Portable Operating System Interface type
operating systems that employ a kernel. The code included
in block 200 typically includes at least some of the computer
code involved in performing the inventive methods.

[0093] PERIPHERAL DEVICE SET 114 includes the set
of peripheral devices of computer 101. Data communication
connections between the peripheral devices and the other
components of computer 101 may be implemented in vari-
ous ways, such as Bluetooth connections, Near-Field Com-
munication (NFC) connections, connections made by cables
(such as universal serial bus (USB) type cables), insertion
type connections (for example, secure digital (SD) card),
connections made through local area communication net-
works and even connections made through wide area net-
works such as the internet. In various embodiments, Ul
device set 123 may include components such as a display
screen, speaker, microphone, wearable devices (such as
goggles and smart watches), keyboard, mouse, printer,
touchpad, game controllers, and haptic devices. Storage 124
is external storage, such as an external hard drive, or
insertable storage, such as an SD card. Storage 124 may be
persistent and/or volatile. In some embodiments, storage 124
may take the form of a quantum computing storage device
for storing data in the form of qubits. In embodiments where
computer 101 is required to have a large amount of storage
(for example, where computer 101 locally stores and man-
ages a large database) then this storage may be provided by
peripheral storage devices designed for storing very large
amounts of data, such as a storage area network (SAN) that
is shared by multiple, geographically distributed computers.
IoT sensor set 125 is made up of sensors that can be used in
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Internet of Things applications. For example, one sensor
may be a thermometer and another sensor may be a motion
detector.

[0094] NETWORK MODULE 115 is the collection of
computer software, hardware, and firmware that allows
computer 101 to communicate with other computers through
WAN 102. Network module 115 may include hardware,
such as modems or Wi-Fi signal transceivers, software for
packetizing and/or de-packetizing data for communication
network transmission, and/or web browser software for
communicating data over the internet. In some embodi-
ments, network control functions and network forwarding
functions of network module 115 are performed on the same
physical hardware device. In other embodiments (for
example, embodiments that utilize software-defined net-
working (SDN)), the control functions and the forwarding
functions of network module 115 are performed on physi-
cally separate devices, such that the control functions man-
age several different network hardware devices. Computer
readable program instructions for performing the inventive
methods can typically be downloaded to computer 101 from
an external computer or external storage device through a
network adapter card or network interface included in net-
work module 115.

[0095] WAN 102 is any wide area network (for example,
the internet) capable of communicating computer data over
non-local distances by any technology for communicating
computer data, now known or to be developed in the future.
In some embodiments, the WAN may be replaced and/or
supplemented by local area networks (LANs) designed to
communicate data between devices located in a local area,
such as a Wi-Fi network. The WAN and/or LANs typically
include computer hardware such as copper transmission
cables, optical transmission fibers, wireless transmission,
routers, firewalls, switches, gateway computers and edge
servers.

[0096] END USER DEVICE (EUD) 103 is any computer
system that is used and controlled by an end user (for
example, a customer of an enterprise that operates computer
101) and may take any of the forms discussed above in
connection with computer 101. EUD 103 typically receives
helpful and useful data from the operations of computer 101.
For example, in a hypothetical case where computer 101 is
designed to provide a recommendation to an end user, this
recommendation would typically be communicated from
network module 115 of computer 101 through WAN 102 to
EUD 103. In this way, EUD 103 can display, or otherwise
present, the recommendation to an end user. In some
embodiments, EUD 103 may be a client device, such as thin
client, heavy client, mainframe computer, desktop computer
and so on.

[0097] REMOTE SERVER 104 is any computer system
that serves at least some data and/or functionality to com-
puter 101. Remote server 104 may be controlled and used by
the same entity that operates computer 101. Remote server
104 represents the machine(s) that collect and store helpful
and useful data for use by other computers, such as computer
101. For example, in a hypothetical case where computer
101 is designed and programmed to provide a recommen-
dation based on historical data, then this historical data may
be provided to computer 101 from remote database 130 of
remote server 104.

[0098] PUBLIC CLOUD 105 is any computer system
available for use by multiple entities that provides on-
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demand availability of computer system resources and/or
other computer capabilities, especially data storage (cloud
storage) and computing power, without direct active man-
agement by the user. Cloud computing typically leverages
sharing of resources to achieve coherence and economies of
scale. The direct and active management of the computing
resources of public cloud 105 is performed by the computer
hardware and/or software of cloud orchestration module
141. The computing resources provided by public cloud 105
are typically implemented by virtual computing environ-
ments that run on various computers making up the com-
puters of host physical machine set 142, which is the
universe of physical computers in and/or available to public
cloud 105. The virtual computing environments (VCEs)
typically take the form of virtual machines from virtual
machine set 143 and/or containers from container set 144. It
is understood that these VCEs may be stored as images and
may be transferred among and between the various physical
machine hosts, either as images or after instantiation of the
VCE. Cloud orchestration module 141 manages the transfer
and storage of images, deploys new instantiations of VCEs
and manages active instantiations of VCE deployments.
Gateway 140 is the collection of computer software, hard-
ware, and firmware that allows public cloud 105 to com-
municate through WAN 102.

[0099] Some further explanation of virtualized computing
environments (VCEs) will now be provided. VCEs can be
stored as images. A new active instance of the VCE can be
instantiated from the image. Two familiar types of VCEs are
virtual machines and containers. A container is a VCE that
uses operating-system-level virtualization. This refers to an
operating system feature in which the kernel allows the
existence of multiple isolated user-space instances, called
containers. These isolated user-space instances typically
behave as real computers from the point of view of programs
running in them. A computer program running on an ordi-
nary operating system can utilize all resources of that
computer, such as connected devices, files and folders,
network shares, CPU power, and quantifiable hardware
capabilities. However, programs running inside a container
can only use the contents of the container and devices
assigned to the container, a feature which is known as
containerization.

[0100] PRIVATE CLOUD 106 is similar to public cloud
105, except that the computing resources are only available
for use by a single enterprise. While private cloud 106 is
depicted as being in communication with WAN 102, in other
embodiments a private cloud may be disconnected from the
internet entirely and only accessible through a local/private
network. A hybrid cloud is a composition of multiple clouds
of different types (for example, private, community or public
cloud types), often respectively implemented by different
vendors. Each of the multiple clouds remains a separate and
discrete entity, but the larger hybrid cloud architecture is
bound together by standardized or proprietary technology
that enables orchestration, management, and/or data/appli-
cation portability between the multiple constituent clouds. In
this embodiment, public cloud 105 and private cloud 106 are
both part of a larger hybrid cloud.

[0101] While the present invention has been described
with reference to a limited number of embodiments, vari-
ants, and the accompanying drawings, it will be understood
by those skilled in the art that various changes may be made,
and equivalents may be substituted without departing from
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the scope of the present invention. In particular, a feature
(device-like or method-like) recited in a given embodiment,
variant or shown in a drawing may be combined with or
replace another feature in another embodiment, variant or
drawing, without departing from the scope of the present
invention. Various combinations of the features described in
respect of any of the above embodiments or variants may
accordingly be contemplated, that remain within the scope
of the appended claims. In addition, many minor modifica-
tions may be made to adapt a particular situation or material
to the teachings of the present invention without departing
from its scope. Therefore, it is intended that the present
invention is not limited to the particular embodiments dis-
closed, but that the present invention will include all
embodiments falling within the scope of the appended
claims. In addition, many other variants than explicitly
touched above can be contemplated.
What is claimed is:
1. A computer-implemented method of generating a
model including a term encoder, the method comprising:
training the model on a training dataset that associates
training terms with first embeddings of the training
terms, wherein the training comprises:
generating, with the term encoder, second embeddings
from numerical representations of word subunits of
the training terms with an objective of minimizing
distances between the first embeddings and the sec-
ond embeddings, wherein the word subunits form
part of a predetermined set of word subunits; and
predicting confidence scores based on the minimized
distances; and
deploying the model as part of an executable algorithm to
allow a user to infer third embeddings and correspond-
ing confidence scores from any input terms written
based on word subunits of the predetermined set.
2. The computer-implemented method according to claim
1, wherein the word subunits of the training terms are
characters, and wherein the model is trained to generate the
second embeddings based on numerical representations of
characters of the training terms.
3. The computer-implemented method according to claim
1, wherein the training terms are captured as tokens, and
wherein at least some of the tokens capture respective sets
of multiple words, and wherein each of the sets of multiple
words are tokenized into a respective single token.
4. The computer-implemented method according to claim
3, further comprising:
prior to training the model, obtaining the training dataset
as an embedding matrix which maps the tokens to the
first embeddings.
5. The computer-implemented method according to claim
4, further comprising:
prior to obtaining the embedding matrix, running a natural
language preprocessing pipeline on text data of one or
more text corpora to tokenize the text data using a
sequence tagging model designed to identity named
entities, so as to tokenize multiple words corresponding
to the name entities into single tokens.
6. The computer-implemented method according to claim
1, wherein the term encoder includes a word subunit decom-
position layer, a word subunit embedding layer, and one or
more trainable layers, and wherein the word subunit decom-
position layer is connected to the word subunit embedding
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layer, itself connected to the one or more trainable layers,
and wherein training the model comprises:
identifying the word subunits of the training terms
through the word subunit decomposition layer;

obtaining numerical representations of the identified word
subunits through the word subunit embedding layer;
and

training the one or more trainable layers to generate the

second embeddings from the obtained numerical rep-
resentations in accordance with an objective function
defining the objective.

7. The computer-implemented method according to claim
6, wherein the one or more trainable layers include several
layers that are configured as a multilayer perceptron.

8. The computer-implemented method according to claim
7, wherein the one or more trainable layers further include
at least one long short-term memory layer interfacing the
word subunit embedding layer with the multilayer percep-
tron.

9. The computer-implemented method according to claim
6, wherein the model further includes an estimator con-
nected by the one or more trainable layers, and wherein
training the model further comprises training the estimator
to predict the confidence scores.

10. The computer-implemented method according to
claim 9, wherein the objective function is a first objective
function, and wherein the estimator is trained to predict the
confidence scores in accordance with a second objective
function, the second objective function defining an objective
of minimizing a difference between the confidence scores
predicted by the estimator and the first objective function as
evaluated based on the minimized distances.

11. The computer-implemented method according to
claim 6, wherein the one or more trainable layers are trained
to learn parameters of distributions, from which respective
ones of the first embeddings are drawn, and wherein the
second embeddings and the corresponding confidence
scores are obtained from the learned parameters of the
distributions.

12. The computer-implemented method according to
claim 11, wherein the parameters learned for each distribu-
tion of the distributions include a mean and a variance, the
mean corresponding to a respective one of the second
embeddings, while a corresponding one of the confidence
scores is obtained based on a negative log-likelihood of the
each distribution.

13. The computer-implemented method according to
claim 12, wherein the objective function is defined based on
negative log-likelihoods of the distributions with respect to
the first embeddings.

14. The computer-implemented method according to
claim 6, wherein the objective function is designed to define
a further objective, in addition to the objective of minimiz-
ing said distances, the further objective causing to push the
second embeddings towards embeddings of semantically
related training terms upon training the model.

15. A computer-implemented method of inferring embed-
dings and corresponding confidence scores with a model
including a term encoder, the method comprising:

loading a model that has been trained on a training dataset

associating training terms with first embeddings of the

training terms, wherein the loading comprises:

generating, with the term encoder, second embeddings
from numerical representations of word subunits of
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the training terms with an objective of minimizing
distances between the first embeddings and the sec-
ond embeddings, wherein the word subunits form
part of a predetermined set of word subunits; and

predicting confidence scores based on the minimized
distances; and

executing the loaded model on input terms written based

on word subunits of the predetermined set to infer third
embeddings and corresponding confidence scores.

16. The computer-implemented method according to
claim 15, further comprising:

accepting or rejecting the third embeddings based on the

corresponding confidence scores.

17. The computer-implemented method according to
claim 15, wherein the model is executed on a set of terms
corresponding to entries of a pre-trained embedding matrix
to infer third embeddings and corresponding confidence
scores for the set of terms, and wherein the computer-
implemented method further comprises:

performing a lossy compression of the pre-trained embed-

ding matrix by pruning entries of the pre-trained
embedding matrix in accordance with the confidence
scores inferred for the set of terms, whereby at least
some of the entries are deleted.

18. The computer-implemented method according to
claim 15, further comprising:

accessing additional words of an updated version of a

vocabulary, wherein the additional words are not pres-
ent in an initial version of the vocabulary; and
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executing the model on the additional words to control-
lably update entries of an embedding matrix in accor-
dance with confidence scores inferred for the embed-
dings generated for the additional words.

19. A computer program product for generating a model
including a term encoder, the computer program product
comprising:

one or more computer-readable tangible storage medium

and program instructions stored on at least one of the
one or more tangible storage medium, the program
instructions executable by a processor capable of per-
forming a method, the method comprising:
training the model on a training dataset that associates
training terms with first embeddings of the training
terms, wherein the training comprises:
generating, with the term encoder, second embed-
dings from numerical representations of word
subunits of the training terms with an objective of
minimizing distances between the first embed-
dings and the second embeddings, wherein the
word subunits form part of a predetermined set of
word subunits; and
predicting confidence scores based on the minimized
distances.

20. The computer program product of claim 19, wherein
the word subunits of the training terms are characters, and
wherein the model is trained to generate the second embed-
dings based on numerical representations of characters of
the training terms.



