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Abstract

Explanation is important for text classification
tasks. One prevalent type of explanation is ra-
tionales, which are text snippets of input text
that suffice to yield the prediction and are mean-
ingful to humans. A lot of research on ratio-
nalization has been based on the selective ra-
tionalization framework, which has recently
been shown to be problematic due to the in-
terlocking dynamics (Yu et al., 2021). In this
paper, we show that we address the interlock-
ing problem in the multi-aspect setting, where
we aim to generate multiple rationales for mul-
tiple outputs. More specifically, we propose a
multi-stage training method incorporating an
additional self-supervised contrastive loss that
helps to generate more semantically diverse ra-
tionales. Empirical results on the beer review
dataset show that our method improves signifi-
cantly the rationalization performance.

1 Introduction

Text classification is a common application of deep
neural models (Kim, 2014; Conneau et al., 2017).
However, lack of interpretability of the predictions
is preventing deep models from being applied in
critical fields. A prevalent way of explaining the
predictions of text classification is selective ratio-
nalization. The key idea is to select informative
text snippets of the input texts. If they are short and
coherent enough to be understood by humans and
suffice to yield the prediction as a substitute of the
full text, they are called rationales (Lei et al., 2016).

A line of research has focused on models that
are inherently interpretable, i.e, able to produce
the prediction along with rationale(s) or mask(s).
Lei et al. (2016) proposed the first selective ratio-
nalization models that extract one chunk of text
as an overall rationale to explain the prediction.
Many works (Chang et al., 2019a; Yu et al., 2019;
Chang et al., 2020; Antognini and Faltings, 2021;
Antognini et al., 2021) follow this framework. Use-
ful explanation can also be multi-aspected (An-

Pours a rich viscous black with a creamy tan
head that patiently gives way to a thin, but
sticky lacing. Aroma consists of opulent roasted
malts and milk chocolate, both of which become
more pr ed as the beer warms. There may be
some wood-like hop notes buried as well. Tasty
flavor of malt, chocolate, and wood with earthy
hops and a touch of booziness as the beer warms.
The wood aspects re-appear at the finish with
more hop bitterness and a hint of the sweet
chocolate.

Document

Pours a rich viscous black
with a creamy tan head
that patiently gives ...

Label: Positive

Multi-Aspect
Rationalization

Explain

This is one of the heavier beers I have had in a
while, and even a bit so stylistically speaking,
however the aromas and flavors are quite
enjoyable making a a good beer.

Predict

Positive Rationale 1: Appearance Rationale 2: Aroma

Rationale 4: Taste Rationale 5: Overall

Figure 1: An illustration of multi-aspect rationalization.
Given a beer review, the model generates five text snip-
pets (i.e. rationales) that relate to different aspects of the
beer, from which the prediction is computed. Different
aspects are highlighted in different colors.

tognini et al., 2021; Antognini and Faltings, 2021),
where each aspect is related to a particular concept,
as illustrated in Figure 1. Unlike training multiple
single-aspect rationale models in order to explain
multiple outputs, one can train a single multi-aspect
model. A significant advantage is that it only re-
quires the overall label instead of labels for all
aspects. This makes multi-aspect rationalization
more practical.

Many works rely on the selective rationalization
framework (Lei et al., 2016) that consists of a gen-
erator and a predictor or its variants. Intuitively, the
generator extracts a snippet of text from the input
and feeds it to the predictor to yield the classifica-
tion. Training is essentially maximizing the mutual
information between the selected text and the label.
However, Yu et al. (2021) reveal the interlocking
problem of this framework: the generator and pre-
dictor may get stuck in a suboptimal equilibrium.
The interlocking dynamics prevents the generator
from selecting the most informative text, and also
prevents the predictor from seeing and predicting
based on the most informative text.

In this work, we propose a new multi-stage train-
ing method that avoids the interlocking problem.



The method optimizes different objectives in three
stages, incorporating a new self-constrastive loss
function, which also promotes more semantically
meaningful rationales. Experiments on the beer
review dataset show that our multi-stage training
fixes the interlocking problem and improves signif-
icantly the rationalization performance. Moreover,
in a fully unsupervised setting, we show that the
generator can learn even better rationalization us-
ing only the self-supervised contrastive loss.

2 Related Work

Selective rationalization (Lei et al., 2016) pro-
poses the generator-predictor framework for ratio-
nalization. The generator can select rationales in
a soft or hard way. Many works (Yu et al., 2019;
Chang et al., 2020; Antognini and Faltings, 2021)
use a hard constraint, forcing the generator to select
text with a pre-specified length. Lei et al. (2016),
Bastings et al. (2019) also propose to use a soft
constraint to specify the sparsity level instead of
the length. Antognini et al. (2021) propose to use a
soft probabilistic mask and enable a more flexible
rationalization with specified continuity level and
sparsity level. The problems in the selective ratio-
nalization have raised attention. Chang et al. (2020)
show that maximizing the mutual information can
be problematic because it may pick up spurious
correlations between input features and the output.
Chang et al. (2019b) propose a game theoretic ap-
proach that captures the multi-faceted nature of
rationales. Yu et al. (2021) reveal a major problem
with the selective rationalization framework that
impedes its performance on both classification and
rationalization - model interlocking.

Multi-aspect rationalization =~ Antognini et al.
(2021) proposed the first multi-aspect rationaliza-
tion model, MTM, which uses a probabilistic multi-
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Figure 2: Our proposed interlock-free three-stage train-
ing method. Darker modules are frozen.

dimensional mask (one for each aspect) to explain
multiple targets (one label for each aspect), and
achieves higher classification accuracy and ratio-
nalization F1-score at the same time, even in the
case of highly correlated data. Antognini and Falt-
ings (2021) proposed a more practical multi-aspect
model, ConRAT, that only requires the overall la-
bel. ConRAT identifies a set of concepts (candidate
rationales) in the document and builds a selector to
decide which ones are chosen, then aggregates the
selected concepts to predict a single target variable.

3 Method

3.1 Multi-Aspect Rationalization

Let x denote the input text, composed of L words
(29, 2!, ...,2%"1). The ground truth is a binary
label y, telling the overall sentiment (positive or
negative). K is predefined as the number of ratio-
nales to generate, which is equal to the number of
aspects. The architecture is composed of two parts:
1) a rationale generator ¢(-) that takes z as input
and outputs K rationales; 2) a predictor f(-) com-
posed by a shared encoder followed by K binary
classifiers. The shared encoder produces a repre-
sentation for each selected rationale per aspect, the
classifiers give a prediction for each aspect, which
are then linearly aggregated into the final outcome.

To be more specific about the generator, An-
tognini et al. (2021) provide variable-length and
soft rationales but use as many labels as rationales,
while Antognini and Faltings (2021) leverages only
the single overall label but is limited to hard ratio-
nales with strict continuity and predefined length.
However, our model uses a soft generator to enable
a more flexible rationalization, and we leverage
only the overall label since the situation without
aspect-wise labels is more realistic and common.
In other words, we take the best of both worlds.

3.2 The Interlocking Dynamics

Yu et al. (2021) reveal a major problem with the
selective rationalization framework - model in-
terlocking. Ideally, the best generator g(-) and
predictor f(-) can both be reached at the same
time during the training. The predictor f(-) may
overfit to the suboptimal rationales generated by
the generator g(-) and keep reinforcing the gen-
erator’s suboptimal behaviour. More formally,
LEE (g, £*), where f* = arg min LEE (g, f) is
concave with regard to g. Intuitively, the predic-
tor can only sees what the generator selects and



tends to overfit to the selection. Consequently, the
predictor may produce a higher cross entropy loss
even when the generator selects a better rationale
than the current suboptimal one because the pre-
dictor has never seen the better rationale. Then the
generator and predictor may get stuck in the subop-
timal equilibrium. Yu et al. (2021) also proposed a
framework called A2R that combines the selective
rationalization paradigm and the attention-based
explanation paradigm, where the concavity in the
selective rationalization is mitigated or canceled
by the convexity in the attention-based explanation.
However, A2R is for single-aspect rationalization
and cannot guarantee that the interlocking problem
is completely avoided. Finally, it requires tuning a
parameter to control the extent of added convexity.

3.3 Self-Supervised Contrastive Loss

One important feature in multi-aspect rationaliza-
tion is to have diverse and discriminative rationales.
We propose to use contrastive loss in our multi-
stage training. Instead of the unsupervised con-
trastive loss applied in SImCLR (Chen et al., 2020)
or MoCo (He et al., 2019), our self-supervised
contrastive loss is more similar to the supervised
contrastive loss (Khosla et al., 2020). The unsu-
pervised contrastive loss contrasts an augmented
version of each anchor sample against all other
samples, regardless of the unavailable true labels,
while the supervised contrastive loss is applied in
the fully-supervised setting, leveraging the label
information. It contrasts a set of samples from the
same class against all other samples from different
classes. Formally, the supervised contrastive loss
(Khosla et al., 2020) for a batch of size IV is

N 1 N
LW = — Z Ny, Z Ligj - Ly=y, - £3;7
i=1" 7 j=1

exp(z - 2j/7c)
SV L - exp(zi - 21/ 7e)

where Ny, denotes the number of samples that have
the same label as the i sample in the batch, z;
denotes the representation for the i-th sample in the
mini-batch, 7. is the temperature hyperparameter.
In our multi-aspect setting, we can consider each
rationale per aspect as a sample, and the gener-
ator gives K samples (rationales) for each input
text. The label of the sample is its aspect in-
dex, which is naturally available because we know
which rationale is generated for which aspect. This

ey

Ef;m = log

is where the self-supervision comes from. The
self-supervised contrastive loss is calculated as in
Equation 1 with the K - N samples in K classes
and each class has IV samples.

3.4 Three-Stage Training

Training the model directly with cross entropy or
self-supervised contrastive loss suffers from the in-
terlocking problem. We propose a three-stage train-
ing framework that alleviates the interlocking prob-
lem. As illustrated in Figure 2, the model is trained
with the cross entropy and self-supervised con-
trastive loss together in the first stage. In the second
stage, the generator is re-initialized, and is trained
with the self-supervised contrastive loss L*¢'f with
the predictor frozen and only the generator can
be updated. In the third stage, the model is trained
with the cross entropy and the self-supervised con-
trastive loss again, with the generator frozen and
only the predictor can be updated.

In the second stage, the objective to be optimized
is no longer dominated by the same loss as in the
first stage (cross entropy), and only the generator
can be updated while the predictor is frozen, there-
fore they cannot be inter-locked. The generator
learns to select rationales that are semantically far
apart from each other with the contrastive loss. Intu-
itively, the shared encoder of the predictor is trained
to learn the representation of rationales in the first
stage, which are fully exploited in the second stage
using a different loss. Similarly, the objective to be
optimized in the third stage is not dominated by the
contrastive loss as in the second stage , and only the
predictor can be updated, therefore the generator
and predictor cannot be inter-locked.

One may wonder why the cross entropy dom-
inates in the first stage instead of the contrastive
loss. In our situation, we have empirically observed
that the cross entropy can be optimized to around
the same value with or without the contrastive loss
together, but the contrastive loss can be optimized
to a significantly lower value alone without the
cross entropy. This suggests that the cross entropy
dominates the contrastive loss in our settings.

It is worth mentioning that it is essential to op-
timize different objectives in three stages. In the
second stage, for example, if we optimize the same
loss, it is still interlocked (or locked) because the
objective to be optimized keeps the concavity with
regard to the generator. Even worse, it gets less
likely to jump out of the suboptimal than before



Avg. Len. Acc. Avg.F1 App.F1 Aro.F1 Pal. F1 Tas. F1 Ove. F1
s VYanilla 3557251 917 424 57.7 37.0 26.7 29.2 61.4
S Contra 35.5/25.1 - 45.0 62.0 43.1 20.7 38.7 60.7
~ 3Stage 35.5/25.1 91.7 45.6 63.5 41.6 26.3 26.0 70.9
w  Vanilla 237/188 909 344 370 314 213 332 269
S Contra 25.4/20.6 - 36.1 58.9 41.4 20.8 35.1 24.3
“ 3Stage 23.9/19.9 90.6 46.5 59.8 48.1 28.7 27.5 68.3

Table 1: Main results of different training methods on the two modes Long and Short. The average length is reported
on both test set and annotation set. F1 is reported for all aspects described in section 4.1. Bold marks best.

because the predictor is frozen, which means the
concave loss landscape for the generator becomes
fixed and the generator can get stuck more easily.

4 Experiments

4.1 Datasets

We train and evaluate the classification and ratio-
nalization performance on the multi-aspect beer re-
views dataset (McAuley et al., 2012). Each review
describes five aspects related to beer: appearance,
aroma, palate, taste and overall. For each aspect,
arating € {0.2,0.3,...,0.9, 1.0} is given (but our
model uses only the overall rating). Following prior
works (Bao et al., 2018), we binarized the ratings
by considering ratings < 0.4 as negative and rat-
ings > 0.6 as positive. The number of positive and
negative samples are around the same. 60,000 bal-
anced samples are sampled. There are 994 reviews
with sentence-level aspect annotations.

4.2 Training Details

For all experiments, we used the 200-dimensional
GloVe word embeddings (Pennington et al., 2014)
trained on Wikipedia. We used the Adam opti-
mizer (Kingma and Ba, 2015) with a learning rate
of 0.0001 and the batch size is 250. The tempera-
ture for contrastive loss is 7. = 0.07. All models
are trained with a pre-defined number of epochs
and the checkpoint with the minimum loss on vali-
dation is evaluated on the test set (for classification
accuracy) and annotation set (for rationalization
F1-score). Following prior works (Antognini and
Faltings, 2021), we manually map the rationales to
the aspect ordering that leads to the best F1-score.

4.3 Results

Table 1 show results on the beer reviews dataset
obtained by evaluating the model described in Sec-
tion 3.1 trained by three different methods: Vanilla,
Contra, and 3Stage. Vanilla is the baseline model

that adopts the single-stage training with the cross
entropy loss, which is the most common loss in pre-
vious works (Lei et al., 2016; Antognini and Falt-
ings, 2021). Contra also adopts the single-stage
training but with the self-supervised contrastive
loss solely. It is trained without labels, thus not
able to do classification. 3Stage is our proposed
three-stage training method described in Section
3.4. All models are evaluated on two modes: Long
and Short, which have different lengths of ratio-
nales on average. Specifically, in Long mode, the
rationales are longer and all tokens are selected
in one of the rationales, while in Short mode, the
rationales are shorter. It is worth mentioning that
Short models are trained in Long mode in the first
stage so that a better representation can be learned
with a wider horizon for the shared encoder.
Compared with Vanilla models, Contra can gen-
erate (slightly to moderately) better rationales in
both Short and Long modes even without ground-
truth information. This suggests that the self-
supervised contrastive loss alone is a good objec-
tive for learning rationalization, thanks to its ability
to promote semantic diversity among rationales.
Compared with Vanilla models, 3Stage achieves a
moderately higher average F1-score in Long mode
and significantly higher in Short mode, while reach-
ing the same level of classification accuracy. Partic-
ularly, the F1-score is significantly higher in terms
of the overall aspect in both modes. This suggests
that 3Stage can effectively jump out of suboptimal
equilibrium and see the more informative text.

S Conclusion

We proposed a multi-stage training method that
avoids the interlocking problem. Its key ingredi-
ent is an additional contrastive loss that guides the
learning of diverse rationales. In our multi-aspect
scenario, experiments on the beer review dataset
show that our method achieves significantly bet-
ter rationalization.
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