
Group 15 EPFL
243163 ς Diego Antognini CS-322 Introduction to database systems
244270 ς Jason Racine 20.05.2015
224295 ς Alexandre Veuthey

IMDB Project

Final report

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 2 EPFL

0. Summary

1. Introduction.. 3

1.1. Technologies .. 3

2. Conceptual design ... 5

2.1. Metadata and data analysis.. 5

2.2. Entity-Relationship schema (ER) .. 6

3. Logical design ... 9

3.1. Relational schema ... 9

3.2. DDL SQL code ... 12

4. Data import .. 18

4.1. Changes made in database schema .. 18

5. Web application .. 20

5.1. Search functionality ... 20

5.2. Main pages .. 24

5.3. Inserting, updating and deleting entities .. 27

6. Simple queries (milestone 2) ... 36

6.1. SQL code .. 36

6.2. Application dedicated page ... 40

7. Interesting queries (milestone 3) ... 42

7.1. SQL code .. 42

7.2. Application dedicated page ... 47

8. Detailed queries analysis ... 51

8.1. Necessity of indexes ... 51

8.2. Distribution of the cost .. 58

8.3. Running times of all queries .. 59

9. Appendix A ς Data import detailed report ... 61

9.1. Imported files ... 61

9.2. SQL DDL code before milestone 2 modification... 65

10. Appendix B ς Web application detailed .. 69

10.1. Major components .. 69

10.2. Main pages queries ... 70

10.3. Insert, update and delete procedures .. 74

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 3 EPFL

1. Introduction

¢ƘŜ Ǝƻŀƭ ƻŦ ǘƘƛǎ ǊŜǇƻǊǘ ƛǎ ǘƻ ǇǊŜǎŜƴǘ ƻǳǊ ǿƻǊƪ ŦƻǊ ǘƘŜ ǇǊƻƧŜŎǘ ŘǳŜ ǘƻ 9tC[Ωǎ /{-322 άLƴǘǊƻŘǳŎǘƛƻƴ ǘƻ

ŘŀǘŀōŀǎŜ ǎȅǎǘŜƳǎέ ŎƻǳǊǎŜΦ wŜŀƭƛȊŜŘ ŀǇǇƭƛŎŀǘƛƻƴ Ŏƻƴǎƛǎǘǎ ƻŦ ŀ ŘŀǘŀōŀǎŜ ŘŜǎƛƎƴŜŘ ŀƴŘ ƛƳǇƭŜƳŜƴǘŜŘ ƻƴ

the basis of simple data files and short description given at the beginning of the project, coupled to a

simple web application to manage and query this database. The stored data corresponds to some

movies and series with simple relations such as actors, extracted from the IMDB movies database1.

1.1. Technologies

As we had full choice about the tools and software we use for this project, here is a list of the main

ŎƻƳǇƻƴŜƴǘǎ ǿŜ ǳǎŜŘ ŀƴŘ ǘƘŜ ǊŜŀǎƻƴ ƻŦ άǿƘȅ ǘƘŜǎŜ ŀƴŘ ƴƻǘ ƻǘƘŜǊǎ ΚέΦ

1.1.1. Database management system (DBMS)

We were offered to use some dedicated Oracle2 server, internal to EPFL. The major inconvenient of

ǘƘƛǎ ǎƻƭǳǘƛƻƴ ǿŀǎ ǘƘŀǘ ǿŜ ǿƻƴΩǘ ōŜ ŀōƭŜ to work on this project in locations where no easy Internet

access is provided, like trains, and we would become dependent of the availability of the server.

Instead, we chose to locally install and use MySQL Community Edition3, with the following argument

about this choice.

¶ It is totally free and wide-used, essentially in the world of web applications, which kind of

application we chosed to build (see [§1.1.2]) ;

¶ it comes with MySQL Workbench4, a powerful dedicated tool to model schemas, manage

graphically the DBMS parameters, check queries are working and so on ;

¶ it is available on all major OS, which can be useful as we have different kinds of computers

with different OS families installed.

More precisely, we use the following versions of the DBMS and tools.

¶ MySQL 5.6.23

¶ MySQL Workbench 6.2.4

¶ MySQL Utilities 1.5.3

1.1.2. Graphical application development

We had full choice about the programming language and API technologies we want to use to develop

the graphical application that has to come out as a result for this project.

As already having experience in such kind of development, we decided to create a web application

based on the following servers and tools.

¶ Apache5 2.4.12, as the web server

¶ PHP6 5.5.0, as the server-side programming technology

¶ jQuery7 2.1.3, as the client-side programming framework

1 http://www.imdb.com
2 http://www.oracle.com/fr/database/overview/index.html
3 http://dev.mysql.com/downloads/
4 http://dev.mysql.com/downloads/workbench/
5 http://httpd.apache.org
6 http://php.net
7 https://jquery.com

http://www.imdb.com/
http://www.oracle.com/fr/database/overview/index.html
http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/workbench/
http://httpd.apache.org/
http://php.net/
https://jquery.com/

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 4 EPFL

¶ ¢ǿƛǘǘŜǊΩǎ ōƻƻǘǎǘǊŀǇ8 3.3.4, as the graphical enhancement framework

The application is strongly based on AJAX requests9 to gather heavy data sets and execute long-

running requests while informing user on the current progress status.

The development is enhanced by the ILARIA toolset, a powerful PHP framework developed by Jason

wŀŎƛƴŜΣ ƻƴŜ ƻŦ ƻǳǊ ǘŜŀƳΩs member. This framework provides the following operations to speed up

development.

¶ Full MVC (Model-View-Controller) paradigm

¶ Internal management and handling of asynchronous requests

¶ MySQL high-level abstraction layer to ease SQL commands building and management

¶ Enhanced security and errors protection

8 http://getbootstrap.com
9 http://fr.w ikipedia.org/wiki/Ajax_(informatique)

http://getbootstrap.com/
http://fr.wikipedia.org/wiki/Ajax_(informatique)

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 5 EPFL

2. Conceptual design

In this chapter, we analyse the data and metadata that are given at the start point of the project and

mix them together into a Entity-Relational (ER) schema and a set of out-of-model constraints.

2.1. Metadata and data analysis

Here we do a hypothesis-based analysis of parts of the data and their metadata (in fact, just column

names) we were given. This will be used in [§2.2] to justify parts of the ER schema.

2.1.1. άt9w{hbέ ŀƴŘ ά![¢9wb!¢L±9ψb!a9έ

These 2 files are obviously linked by the fact that a person can have multiple alternative names,

which is confirmed by the presence of the άǇŜǊǎƻƴψƛŘέ field in ά![¢9wb!¢L±9ψb!a9έ. In άt9w{hbέ

as well as in ά![¢9wb!¢L±9ψb!a9έ, the άƴŀƳŜέ field seems to be always constructed in the same

way, starting by the last name, followed by a comma, and then the first name(s). Sometimes, there is

ƻƴƭȅ ƻƴŜ ƴŀƳŜ ǿƛǘƘƻǳǘ ŎƻƳŀΣ ǎǳƎƎŜǎǘƛƴƎ ƛǘΩǎ Ƨǳǎǘ ǘƘŜ άƳŀƛƴ ƴŀƳŜέΣ ƭŜǘΩǎ ǎŀȅ ƭŀǎǘ ƴŀƳŜΦ ¢his field is to

be split ƛƴǘƻ н ŘƛǎǘƛƴŎǘ ŦƛŜƭŘǎ άƭŀǎǘƴŀƳŜέ ŀƴŘ άŦƛǊǎǘƴŀƳŜέ ōȅ ǇŀǊǎƛƴƎ ŘǳǊƛƴƎ ǘƘŜ Řŀta import.

We also remark that the field άƎŜƴŘŜǊέ in άt9w{hbέ Ŏƻƴǘŀƛƴǎ ŀƭǿŀȅǎ ǾŀƭǳŜǎ άƳέ ŀƴŘ άŦέΣ ƻōǾƛƻǳǎƭȅ

describing if the person is a man or a woman. This is a candidate field to be exported as a separate

entity set in ER schema.

2.1.2. άtwh5¦/¢Lhbέ ŀƴŘ ά![¢9wb!¢L±9ψ¢L¢[9έ

These н ŦƛƭŜǎ ŀǊŜ ŀƭǎƻ ƭƛƴƪŜŘ ƛƴ ŀ ǎƛƳƛƭŀǊ ǿŀȅ ŀǎ άt9w{hbέ ŀƴŘ ά![¢9wb!¢L±9ψb!a9έ όǎŜŜ [§2.1.1]).

.ȅ ŘƛƎƎƛƴƎ ƛƴǘƻ άtwh5¦/¢LhbέΣ ǿŜ ǎŜŜ ǘƘŀǘ ǘƘŜǊŜ ŀǊŜ о ǘȅǇŜǎ ƻŦ ǇǊƻŘǳŎǘƛƻƴǎ ǘƻ ŎƻƴǎƛŘŜǊΦ

¶ The single movies, that are registered once with all their informations ;

¶ the series, that are registered as a grouping element for episodes that they contain ;

¶ the episodes, linked to particular serie through the άǎŜǊƛŜǎψƛŘέ field, and also registering a

particular άǎŜŀǎƻƴψƴǳƳōŜǊέ and άŜǇƛǎƻŘŜψƴǳƳōŜǊέ relative to the serie it belongs to.

¢Ƙƛǎ ǊŜǇŀǊǘƛǘƛƻƴ ƻŦ ǇǊƻŘǳŎǘƛƻƴǎ ƛǎ ŀ ŎƭŜŀǊ ŎŀƴŘƛŘŀǘŜ ǘƻ ōŜ ƳƻŘŜƭƭŜŘ ŀǎ ŀ άL{!έ ƘƛŜǊŀǊŎƘȅ ƛƴ ǘƘŜ 9w

schema. More importantly, the season concept which is only present through the άǎŜŀǎƻƴψƴǳƳōŜǊέ

field is a perfect candidate to be exported as a separate entity set in the ER schema, adding a level of

hierarchy and thus helping to ensure consistency of the data.

The άƎŜƴŘŜǊέ ŀƴŘ άkindέ fields of άtwh5¦/¢Lhbέ are also good candidates for such export, as they

contain highly-repeated values that cleary consist of a finite set of genders and kinds of movies,

ŜȄŎŜǇǘ ŦƻǊ ǘƘŜ άŜǇƛǎƻŘŜέ ŀƴŘ άǘǾψǎŜǊƛŜǎέ ǾŀƭǳŜǎ ƻŦ άkindέ ǘƘŀǘ ŀǊŜ ƳƻŘŜƭƭŜŘ ǘƘǊƻǳƎƘ ǘƘŜ άL{!έ

hierarchy.

2.1.3. ά/hat!b¸έ ŀƴŘ άtwh5¦/¢Lhbψ/hat!b¸έ

The ά/hat!b¸έ file contains listing of companies. By digging into it, we can rapidly show that the

άŎƻǳƴǘǊȅψŎƻŘŜέ field is highly-repeating, so it is a candidate to be exported in a separate entity set in

the ER schema.

The άtwh5¦/¢Lhbψ/hat!b¸έ file acts as an associative relationship between άtwh5¦/¢Lhbέ and

ά/hat!b¸έ. By digging into it, we easily see that a company can be involved in multiple productions,

and that a production needs the participation of multiple companies, thus giving a N:N relationship in

the incoming ER schema, with a supplementary attribute for the type of company, that describes

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 6 EPFL

ǎƻƳŜ ǎƻǊǘ ƻŦ άǊƻƭŜέ ǘƘŜ ŎƻƳǇŀƴȅ ǇƭŀȅŜŘ ƛƴ ǘƘŜ ǇǊƻŘǳŎǘƛƻƴ όǇǊƻŘǳŎǘƛƻƴ ŎƻƳǇŀƴȅ ƻǊ ŘƛǎǘǊƛōǳǘƻǊύ. This

attribute is thus also a good candidate to be exported as a separate entity set to reduce redundancy.

2.1.4. άtwh5¦/¢Lhbψ/!{¢έ ŀƴŘ ά/I!w!/¢9wέ

The άtwh5¦/¢Lhbψ/!{¢έ file acts as an associative relationship between άtwh5¦/¢LhbέΣ άt9w{hbέ

and ά/I!w!/¢9wέ, with a supplementary άǊƻƭŜέ value. This value is clearly repeating, making it a

good candidate to be modelled as a separate entity set in the ER schema. By exploring the file, we

also see that the άǇǊƻŘǳŎǘƛƻƴψƛŘέ, άǇŜǊǎƻƴψƛŘέ and άǊƻƭŜέ are always filled, thus always telling that a

person participated in a production as a particular role. This is to be modelled as a ternary

relationship set in the ER model. But because the άŎƘŀǊŀŎǘŜǊψƛŘέ is not always filled, we need to be

careful and think about modelling it as a second relationship set, linking the aggregation of our first

relationship set to the entity set corresponding to the file ά/I!w!/¢9wέ.

Finally, the ά/I!w!/¢9wέ file is just a listing of the characters played in movies. By making a quick

test with the search function of a basic text editor into άtwh5¦/¢Lhbψ/!{¢έ, it seems that some

characters appears in multiple productions, either referenced by the exact same key or by having

multiple instances of it in the ά/I!w!/¢9wέ ŦƛƭŜ ǿƛǘƘ ǎƭƛƎƘǘƭȅ ŘƛŦŦŜǊŜƴǘ ƴŀƳŜǎ όŜΦƎΦ άWŀƳŜǎ .ƻƴŘέΣ

άWŀƳŜǎ .ƻƴŘ ллтέΣ άллт WŀƳŜǎ .ƻƴŘέΣ ΧύΦ This will be hard to make this proper, but this is not the

purpose of the first milestone of this project.

2.2. Entity-Relationship schema (ER)

The conceptual design of the database is achieved using the same ER formalism as the one seen in

course. The schema can be found on the next page, followed by a set of out-of-model constraints,

these ŀǊŜ ŎƻƴǎǘǊŀƛƴǘǎ ǘƘŀǘ ŀǇǇƭȅ ǘƻ ǘƘŜ Řŀǘŀ ƳƻŘŜƭ ǘƻ ŜƴǎǳǊŜ ƛǘǎ ŎƻǊǊŜŎǘƴŜǎǎΣ ōǳǘ ǘƘŀǘ ŎŀƴΩǘ ōŜ

ƳƻŘŜƭƭŜŘ ōȅ ǘƘŜ ŎƘƻǎŜƴ ŦƻǊƳŀƭƛǎƳ όŀƴŘ ƳƻǊŜ ƛƳǇƻǊǘŀƴǘƭȅΣ ǘƘŀǘ ŀƴȅ 5.a{ Ŏŀƴƴƻǘ ŜƴǎǳǊŜ ŀǘ ŀƭƭΣ ƛǘΩǎ

up to the applicative part to deal later with these problems).

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 7 EPFL

2.2.1. ER schema

2.2.2. Caption

Blue entity sets

Turquoise attributes

Magenta relationship sets

- - - - - - - aggregation

_______ ISA hierarchy

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 8 EPFL

2.2.3. Out-of-model constraints

These are the constraints that cannot be modelled on the ER schema, and that will not be ensured by

the DMBS but by the application.

1. For each instance of MainName, the referenced Name must belong to the referenced Person

through an instance of NameToPerson ;

2. For each instance of MainTitle, the referenced Title must belong to the referenced

Production through an instance of TitleToProduction.

2.2.4. Account for design choices

Hereafter, we talk about the main design choices we did and some particularities of the method we

used to design this database.

Name, MainName and NameToPerson

The entity set Name corresponds to the ά![¢9wb!¢L±9ψb!a9έ file described in [§2.1.1]. We

ǊŜƳƻǾŜŘ ǘƘŜ άŀƭǘŜǊƴŀǘƛǾŜέ ǇŀǊǘ ōŜŎŀǳǎŜ ǘƘŜ Ƴŀƛƴ ƴŀƳŜΣ ƻǊƛƎƛƴŀƭƭȅ ǘƘŜ ŦƛŜƭŘ άƴŀƳŜέ in άt9w{hbέ, is

also modelled through this table. The NameToPerson relationship is the main link between Person

and Name. This makes Name a weak entity, because a name has no sense without its owner. The

MainName relationship is the cleanest way of ensuring that each Person has exactly one main name.

This leads to the first out-of-model constraint defined in [§2.2.3].

Title, MainTitle and TitleToProduction

The entity set Title corresponds to the ά![¢9wb!¢L±9ψ¢L¢[9έ file described in [§2.1.2]. We removed

ǘƘŜ άŀƭǘŜǊƴŀǘƛǾŜέ ǇŀǊǘ ƛƴ ŀ ǎƛƳƛƭŀǊ ŦŀǎƘƛƻƴ ŀǎ ŦƻǊ Name, described above. The TitleToProduction

relationship is the main link between Production and Title. This makes Title a weak entity, because a

title has no sense without its owning production. The MainTitle relationship is the cleanest way of

ensuring that each Production has exactly one main title. This leads to the second out-of-model

constraint defined in [§2.2.3].

field gender of Person

We chosed to not export this field as a separate entity set, despite what was described in [§2.1.1],

because this is a single letter which can be managed by the applicative part of the project. This

alternative is more efficient than setting a foreign key and the indexes it involves just for a single

character. Thus, searching for all women in the Person entity set is just searching through the

ƛƴŘŜȄŜŘ ŎƻƭǳƳƴ ƎŜƴŘŜǊ ŦƻǊ ŀƭƭ ΨŦΩΦ LŦ ǿŜ ŘƛŘ ƛǘ ǿƛǘƘ ŀ ǎŜǇŀǊŀǘŜ Ŝƴǘƛǘȅ ǎŜǘΣ ǿŜ ƘŀŘ to search through it

ŦƻǊ ǘƘŜ ΨƛŘΩ ƻŦ ΨŦΩ όƭŜǘΩǎ ǎŀȅΣ мύΣ ǘƘŜƴ ŘƻƛƴƎ ŀ ǎƛƳƛƭŀǊ ǎŜŀǊŎƘ ǘƘŀƴ ōŜŦƻǊŜ ōǳǘ ŦƻǊ ŀƭƭ ΨмΩΦ

aggregation around Casting

We made Casting a 3-ary relationship, linked to Character through PlayCharacter, instead of making

Casting a 4-ary, because not all instances of Casting are linked to a Character.

ISA architecture

As suggested in [§2.1.2], the best way to model the different kinds of productions is to use a ISA

hierarchyΦ IŜǊŜ ǿŜ ŎƘƻǎŜŘ ǘƻ ǎŜǇŀǊŀǘŜ άǎƛƴƎƭŜǎ ƳƻǾƛŜǎέ ƛƴǘƻ SingleProduction and apply a covering

constraint on the ISA hierarchy, to make things clearer into the resulting database. We also modelled

ǘƘŜ άǎŜŀǎƻƴǎέ ŎƻƴŎŜǇǘ ŀǎ ŀ ǎŜǇŀǊŀǘŜ Ŝƴǘƛǘȅ ǎŜǘΣ ƴƻǘ ǇŀǊǘ ƻŦ ǘƘŜ ISA hierarchy (because in the original

άtwh5¦/¢Lhbέ file the seasons are just discerned by numbers in a column, they do not have rows

for them), so things are clearly hierarchized, thus making the future queries easier to build.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 9 EPFL

3. Logical design

In this chapter, we translate the ER schema defined in [§2.2] into a purely relational schema, thus

choosing data types (domains) for the attributes and determining whether relationship sets becomes

foreign keys or associative tables. This schema is then implemented as a MySQL database.

3.1. Relational schema

Here, we describe the relational schema in a textual form, then justify our main choices about the

translation of the ER schema into this relational schema.

3.1.1. Textual schema

This schema is given by alphabetic order of the relations names. Underlined attributes corresponds

to the primary key for the corresponding table. Foreign keys are indicated under each relation

description in green. Unicity constraints are indicated under each relation in blue. Attributes in bold

are mandatory ones; ones not in bold can be omitted (NULL authorized).

casting(id: INT, person_id: INT, production_id: INT, role_id: INT, character_id: INT)

 person_id references person.id

 production_id references production.id

 role_id references role.id

 character_id references character.id

 (person_id, production_id, role_id) must be unique

character(id: INT, name: VARCHAR(255))

 (name) must be unique

company(id: INT, name: VARCHAR(255), country_id: INT)

 country_id references country.id

 (name, country_id) must be unique

country(id: INT, code: VARCHAR(2))

 (code) must be unique

episode(id: INT, number: INT, season_id: INT)

 season_id references season.id

 id references production.id (part of the ISA hierarchy)

 (number, season_id) must be unique

gender(id: INT, name: VARCHAR(255))

 (name) must be unique

kind(id: INT, name: VARCHAR(255))

 (name) must be unique

name(id: INT, firstname: VARCHAR(255), lastname: VARCHAR(255), person_id: INT)

 person_id references person.id

 (firstname, lastname, person_id) must be unique

person(id: INT, gender: VARCHAR(1), trivia: TEXT, quotes: TEXT, birthdate: DATE, deathdate: DATE,

birthname: TEXT, minibiography: TEXT, spouse: VARCHAR(255), height: FLOAT, name_id: INT)

 name_id references name.id

 (name_id) must be unique

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 10 EPFL

production(id: INT, year: INT, title_id: INT, gender_id: INT)

 title_id references title.id

 gender_id references gender.id

 (title_id) must be unique

productioncompany(id: INT, production_id: INT, company_id: INT, type_id: INT)

 production_id references production.id

 company_id references company.id

 type_id references type.id

 (production_id, company_id, type_id) must be unique

role(id: INT, name: VARCHAR(255))

 (name) must be unique

season(id: INT, number: INT, serie_id: INT)

 serie_id references serie.id

 (number, serie_id) must be unique

serie(id: INT, yearstart: INT, yearend: INT)

 id references production.id (part of the ISA hierarchy)

singleproduction(id: INT, kind_id: INT)

 id references production.id (part of the ISA hierarchy)

 kind_id references kind.id

title (id: INT, title : VARCHAR(255), production_id: INT)

 production_id references production.id

 (title, production_id) must be unique

type(id: INT, name: VARCHAR(255))

 (name) must be unique

3.1.2. Account for translation choices

We made the following main choices when translating the conceptual schema into a relational one.

casting and its aggregation

The Casting relationship defined in the ER schema, and its aggregation used in the PlayCharacter

relationship upon the Character entity, are translated to a single associative relation casting in the

above relational schema, with the particularity that the character_id field can be NULL, meaning that

no PlayCharacter instance exist for the given Casting instance. This seems more efficient to group

them both in a single relation instead of having 2 different relations with more foreign keys to

manage.

use of id fields in the associative relations

In the casting and companytype relations, an id field is always introduced, totally inexistent in the

original data given as CSV files, declared as the primary keys for these relations. Thus, a unicity

constraint is set over the foreign keys involved in the relation. It is generally admitted that it is better

when designing a database to associate each relation a single, one-field primary key than composing

complex primary keys with multiple fields, even if this seems more logical to do. The reason for that

is that when we want to improve the database, adding more relations into it, it is easier having only

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 11 EPFL

one field to use as a foreign key to reference another relation than to have several fields to use as a

foreign key.

data types

For all key fields (primary and obviously foreign), the data type is INT, which seems logical and non-

controversing in most caseǎΦ Lƴ ǇŀǊǘƛŎǳƭŀǊΣ ŀƭƭ άƛŘέ fields given in the CSV data files are numerical, and

for the primary keys that are to be generated during data import (those of associative relations that

do not appear directly in CSV filesύ aȅ{v[Ƙŀǎ ŀ ŦǳƴŎǘƛƻƴŀƭƛǘȅ ŎŀƭƭŜŘ ά!¦¢hψLb/w9a9b¢έ ǘƘŀǘ ŀŎǘǎ

only on INT type and its variants (UNSIGNED, BIGINT, TINYINT, ...) We can work only with INT

UNSIGNED, having Ḑς ḙτϽρπ possible valuesΣ ŀǎ ŀƭƭ ƎƛǾŜƴ Řŀǘŀ ŦƛƭŜǎ ƘŀǾŜ ŀǘ Ƴƻǎǘ млΩǎ ƻŦ

millions of entries.

Then, MySQL has special, dedicated data types for things like dates and years. In particular, by using

the type DATE for data-like fields, it become easier in the queries to make calculations on those

fields. When storing years, we originally used the YEAR data type, but as discussed in [§4.1.3], it was

impossible to store pre-1900 values, so we changed it to INT to ensure everything is fine.

The textual fields are then divided into 3 groups.

¶ ²ƘŜƴ ǘƘŜ ƭŜƴƎǘƘ Ŏŀƴ ōŜ ŀǊōƛǘǊŀǊƛƭȅ ƭƻƴƎ όōƛƻƎǊŀǇƘȅΣ ǉǳƻǘŜǎΣ ŜǘŎΧύ ŀƴŘ ƴƻ ǎǇŜŎƛŦƛŎ ǉǳeries

have to be executed on these fields, they are assigned the type TEXT, which can contain

(theoretically) infinite texts, but for which indexation is hard to configure (because index

must be specified on a maximum length, which cannot be infinite like the size of the

ŎƻǊǊŜǎǇƻƴŘƛƴƎ ŦƛŜƭŘΧύ Τ

¶ ǿƘŜƴ ǘƘŜ ƭŜƴƎǘƘ ƛǎ ǎǳǇǇƻǎŜŘ ǘƻ ōŜ ǉǳƛǘŜ ƭƛƳƛǘŜŘ όƴŀƳŜǎΣ ǘƛǘƭŜǎΣ ŜǘŎΧύ and the fields appear to

be used in specific queries of milestones 2 and 3, they are assigned the type VARCHAR(255),

which can contain up to 255. It is then easy to put indexes on these fields. The exact value

255 is the more commonly used for such field, because it is quite large but is the larger

number that can be encoded on 8 bits. As the length of a VARCHAR is stored with each

instance of the corresponding attribute, 255 is thus the larger number of characters we can

count without requiring adding a second metadata byte to count numbers >255 ;

¶ ǿƘŜƴ ǘƘŜ ƭŜƴƎǘƘ ƛǎ ǇǊŜŎƛǎŜƭȅ ƪƴƻǿƴ όм ŦƻǊ ǘƘŜ ƎŜƴŘŜǊ ƻŦ ǇŜǊǎƻƴǎΣ н ŦƻǊ ŎƻǳƴǘǊȅ ŎƻŘŜǎΣ ΧύΣ ǘƘŜ

type VARCHAR(x) with x the precisely known length is assigned.

translation of the ISA hierarchy

We chosed to implement the ISA hierarchy described in the ER schema by keeping all entities

involved into it (the parent as well as the children), linking them by their primary keys id. While it is a

covering, non-overlapping ISA architecture, the parent entity set (Production) has its own attributes

and is involved in external relationships, in which in particular ProductionCompany is of cardinality

N:N, thus complicating things if we only keep the children relations.

3.1.3. Unacknowledged constraints

In this relational schema, lots of constraints previously specified are not present, and thus need to be

acknowledged here before writing down the SQL code to create tables.

¶ The 2 out-of-model constraints declared for ER schema in [§2.2.3], which will be

implemented by the application as no database mechanism can ensure that ;

¶ all weak entities of the ER schema (Name, Title, Season, Episode) will be ensured weak in the

{v[ŎƻŘŜ ǘƘǊƻǳƎƘ ǘƘŜ άhb 59[9¢9 /!{/!59έ ŘƛǊŜŎǘƛǾŜǎ Τ

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 12 EPFL

¶ the non-overlapping property of the ISA architecture will have to be checked by the

application.

3.2. DDL SQL code

Hereafter is the SQL code that creates the tables and sets up the links (foreign keys) between them,

compatible with the MySQL DBMS. The creation of the schema and database, as well as the

management of the users and their rights to access database is not discussed here.

3.2.1. MySQL DDL code

-- 1. Create tables with unlinked columns, pr imary keys, unique indexes and simple indexes on

future foreign keys

CREATE TABLE `name` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `firstname` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NULL,

 `lastname` VARCHAR(255) CHARACTER SET utf8 COLLATE u tf8_bin NOT NULL,

 `person_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_first_last_person` (`firstname` , `lastname` , `person_id`)

);

CREATE TABLE `person` (

 `id` INT UNSIGNED,

 `gender` VARCHAR(1) NULL,

 `trivia` TEXT NULL,

 `quotes` TEXT NULL,

 `birthdate` DATE NULL,

 `deathdate` DATE NULL,

 `birthname` TEXT NULL,

 `minibiography` TEXT NULL,

 `spouse` VARCHAR(255) NULL,

 `height` FLOAT NULL,

 `name_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`i d`),

 UNIQUE KEY `un_main_name` (`name_id`)

);

CREATE TABLE `role` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_name` (`name`)

);

CREATE TABLE `character` (

 `id` INT UNSIGNED,

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_name` (`name`)

);

CREATE TABLE `production` (

 `id` INT UNSIGNED,

 `year` INT UNSIGNED NULL,

 `t itle_id` INT UNSIGNED NOT NULL,

 `gender_id` INT UNSIGNED NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_main_title` (`title_id`),

 KEY `idx_gender` (`gender_id`)

);

CREATE TABLE `casting` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `person_id` IN T UNSIGNED NOT NULL,

 `production_id` INT UNSIGNED NOT NULL,

 `role_id` INT UNSIGNED NOT NULL,

 `character_id` INT UNSIGNED NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_person_prod_role _character ` (`person_id` , `production_id` , `role_id` ,

 `character_id`)

);

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 13 EPFL

CREATE TABLE `title` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `title` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL,

 `production_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_title_producti on` (`title` , `production_id`)

);

CREATE TABLE `gender` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_name` (`name`)

);

CREATE TABLE `company` (

 `id` INT UNSIGNED,

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL,

 `country_id` INT UNSIGNED NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_name_country` (`name` , `country_id`)

);

CREATE TABLE `country` (

 `id` INT UNSIGNE D AUTO_INCREMENT,

 `code` VARCHAR(10) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_code` (`code`)

);

CREATE TABLE `type` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `name` VARCHAR(255) CHARACTER SET utf8 COLL ATE utf8_bin NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_name` (`name`)

);

CREATE TABLE `singleproduction` (

 `id` INT UNSIGNED,

 `kind_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`) ,

 KEY `idx_kind` (`kind_id`)

);

CREATE TABLE `kind ` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL,

 PRIMARY KEY (`id`) ,

 UNIQUE KEY `un_kind_name` (`name`)

);

CREATE TABLE `season` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `number` IN T NULL,

 `serie_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_serie_number` (`serie_id` , `number`)

);

CREATE TABLE `serie` (

 `id` INT UNSIGNED,

 `yearstart` INT UNSIGNED NULL,

 `yearend` INT UNSIGNED NULL,

 PRIMARY KEY (`id`)

);

CREATE TABLE `episode` (

 `id` INT UNSIGNED,

 `number` INT NULL,

 `season_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_season_number` (`season_id` , `number`)

);

CREATE TABLE `productioncompany` (

 `id` I NT UNSIGNED,

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 14 EPFL

 `production_id` INT UNSIGNED NOT NULL,

 `company_id` INT UNSIGNED NOT NULL,

 `type_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_production_company` (`production_id` , `company_id` , `type_id`)

);

-- 2. add al l foreign keys constraints that are on schema

ALTER TABLE `name`

 ADD CONSTRAINT ̀ fk_nametoperson` FOREIGN KEY (`person_ id`) REFERENCES `person` (`id`)

 ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `person`

 ADD CONSTRAINT ̀ fk_mainname` FOREIGN KEY (`name_id`) REFERENCES `name` (`id`)

 ON DELETE RESTRICT ON UPDATE CASCADE;

ALTER TABLE `production`

 ADD CONSTRAINT ̀ fk_maintitle` FOREIGN KEY (`title _id`) REFERENCES `title` (`id`)

 ON DELETE RESTRICT ON UPDATE CASCADE,

 ADD CONSTRAINT ̀ fk_productionhasgender` FOREIGN KEY (`gender_id`)

 REFERENCES `gender` (`id`) ON DELETE SET NULL ON UPDATE CASCADE;

ALTER TABLE `casting`

 ADD CONSTRAINT ̀ fk_casting_person` FOREIGN KEY (`person_id`) REFERENCES `person` (`id`)

 ON DELETE CASCADE ON UPDATE CASCADE,

 ADD CONSTRAINT ̀ fk_casting_role` FOREIGN KEY (`rol e_id`) REFERENCES `role` (`id`)

 ON DELETE RESTRICT ON UPDATE CASCADE,

 ADD CONSTRAINT ̀ fk_casting_production ` FOREIGN KEY (`production_id`)

 REFERENCES `production` (`id`) ON DELETE CASCADE ON UPDATE CASCADE,

 ADD CONSTRAINT ̀ fk_casting_characte r` FOREIGN KEY (`character_id`)

 REFERENCES `character` (`id`) ON DELETE SET NULL ON UPDATE CASCADE;

ALTER TABLE `title`

 ADD CONSTRAINT ̀ fk_titletoproduction ` FOREIGN KEY (`production_id`)

 REFERENCES `production` (`id`) ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `company`

 ADD CONSTRAINT ̀ fk_companyhascou ntry` FOREIGN KEY (`country_id`)

 REFERENCES `country` (`id`) ON DELETE SET NULL ON UPDATE CASCADE;

ALTER TABLE `season`

 ADD CONSTRAINT ̀ fk_seasonhasserie` FOREIGN KEY (`serie _id`) REFERENCES `serie` (`id`)

 ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `episode`

 ADD CONSTRAINT ̀ fk_episodehasseaso n` FOREIGN KEY (`season_ id`) REFERENCES `season` (`id`)

 ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `singleproduction`

 ADD CONSTRAINT ̀ fk_singleproduction_has_kind` FOREIGN KEY (`kind_id`)

 REFERENCES `kind` (`id`) ON DELETE RESTRICT ON UPDATE CASCADE;

ALTER TABLE `productioncompany`

 ADD CONSTRAINT ̀ fk_productioncompany_production ` FOREIGN KEY (`production_id`)

 REFERENCES `production` (`id`) ON DELETE CASCADE ON UPDATE CASCADE,

 ADD CONSTRAINT ̀ fk_productioncompany_c ompany` FOREIGN KEY (`company_id`)

 REFERENCES `company` (`id`) ON DELETE CASCADE ON UPDATE CASCADE,

 ADD CONSTRAINT ̀ fk_productioncompany_type` FOREIGN KEY (`type_id`)

 REFERENCES `type` (`id`) ON DELETE RESTRICT ON UPDATE CASCADE;

-- 3. add foreign keys constraints relative to "ISA" architecture

ALTER TABLE `serie`

 ADD CONSTRAINT ̀ fk_serie_isa_production` FOREIGN KEY (`id`) REFERENCES `production` (`i d`)

 ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `episode`

 ADD CONSTRAINT `fk_episode_isa _production` FOREIGN KEY (`id`)

 REFERENCES `production` (`id`) ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `singleproduction`

 ADD CONSTRAINT ̀ fk_singleproduction_isa _production` FOREIGN KEY (`id`)

 REFERENCES `production` (`id`) ON DELETE CASCADE ON UPDATE CASCADE;

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 15 EPFL

3.2.2. Method for writing SQL DDL code

The above SQL code is highlighted by colours according to the following list.

 Keywords keywords of the language, defining tables and constraints

 Identificators naƳŜǎ ƻŦ ǘŀōƭŜǎΣ ŀǘǘǊƛōǳǘŜǎΣ ŎƻƴǎǘǊŀƛƴǘǎΣ ŜǘŎΧ

 ¢ƘŜȅ ŀǊŜ άōŀŎƪǘƛŎƪǎ ǉǳƻǘŜŘέΣ ŀǎ ǘƘƛǎ ƛǎ ǘƘŜ ǿŀȅ ǘƻ ŜƴǎǳǊŜ ǘƘŀǘ ƛŦ ŀƴ ƛŘŜƴǘƛŦƛŎŀǘƻǊ

 ŀŎŎƛŘŜƴǘŀƭƭȅ όƻǊ ǾƻƭǳƴǘŀǊƛƭȅΧύ Ŏƻƴǘŀƛƴ ŀ ƪŜȅǿƻǊŘ ƻŦ aȅ{v[Σ ƛǘ ǿƛƭƭ ƴƻǘ ōŜ

 interpreted as a keyword at all.

 Data types MySQL data types for each attributes

 They are set according to the relational schema (see [§3.1.1]). Keys (primary

 and foreign) are defined as UNSIGNED to gain 1 bit, because keys are never

 negative.

 Null cond. These are constraints that specify whether a field can be set to NULL (no value)

 or not. MySQL has a default value when it is not specified, but assuming

 default values when building a script is always a bad idea, as default values

 might change from a version to another. CƻǊ άƛŘέ ŦƛŜƭŘǎΣ ƛǘ ƛǎ ƴƻǘ ƴŜŎŜǎǎŀǊȅ ǘƻ

 ǎǇŜŎƛŦȅ άbh¢ b¦[[έΣ ōŜŎŀǳǎŜ ƛǘ ƛǎ ŀ ƳŀƴŘŀǘƻǊȅ ƛƳǇƭƛŎŀǘƛƻƴ ƻŦ ǘƘŜ ǳǎŜ ƻŦ ǘƘŜ

 άtwLa!w¸ Y9¸έ ŎƭŀǳǎŜΦ

 hb Χ ŎƭŀǳǎŜǎ These clauses specify what to do when a primary key referenced by a foreign

 is updated or its corresponding row is deleted from the referenced table.

 AUTO_INCREMENT clauses are set on primary keys of associative tables, as well as exported

 tables that were originally redundant attributes, for which no data exist at all

 in the given CSV data files.

¢ƘŜ άhb ¦t5!¢9έ ŎƭŀǳǎŜǎ ŀǊŜ ŀƭǿŀȅǎ ǎŜǘ ǘƻ CASCADE as this enable us (DBA) to migrate the database

to other servers with possible implications need on the numerical format of the keys with some ease

of data update.

¢ƘŜ άhb 59[9¢9έ ŎƭŀǳǎŜǎ ŀǊŜ ǎŜǘ according to the following method :

¶ If the foreign key is defined in a weak entity, referencing the weak relationship according to

the ER schema, we use άhb 59[9¢9 /!{/!59έ ōŜŎŀǳǎŜ ǘƘŜ ǿŜŀƪ Ŝƴǘƛǘȅ Ŏŀƴƴƻǘ ŜȄƛǎǘ ǿƛǘƘƻǳǘ

the entity it is linked on, by definition ;

¶ if the foreign key is referencing a table that acts as a limited list of values (genders of

ǇǊƻŘǳŎǘƛƻƴǎΣ ŦƻǊ ŜȄŀƳǇƭŜύΣ ǿŜ ǳǎŜ άhb 59[9¢9 w9{¢wL/¢έΣ ǘƘǳǎ ǇǊŜǾŜƴǘƛƴƎ ǘƘŜ ŘŜƭŜǘƛƻƴ ƻŦ ŀ

value from the list when it is in use ;

¶ if the foreign key is definŜŘ ŦƻǊ ǘƘŜ ǇǳǊǇƻǎŜ ƻŦ ŀƴ L{! ƘƛŜǊŀǊŎƘȅΣ ǿŜ ǳǎŜ άhb 59[9¢9 /!{/!59έΣ

as when the parent goes away, its children (representing other aspects of the same entity)

must also go away ;

¶ ǿƘŜƴ ǘƘŜ ŦƻǊŜƛƎƴ ƪŜȅ Ŏŀƴ ōŜ ǎŜǘ ǘƻ b¦[[Σ ǿŜ ƎŜƴŜǊŀƭƭȅ ǳǎŜ άhb 59[9¢9 {9¢ b¦[[έΦ

The creation of the foreign key constraints is entirely done separately at the end of the script for 2

major reasons.

¶ There are some circular relationships, that are a table A referencing a table B while the table B

references the table A. As a foreign key cannot be created until the referenced table exist, at

least one of the 2 foreign key in the case of a circular relationship must be created afterwards ;

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 16 EPFL

¶ As for the above reason we need to create few foreign keys after corresponding tables have

been created, it is then more readable to create them all after all tables have been created,

otherwise we have lots of places to look at to find all foreign keys while reading the script.

¢ƘŜ ά¦bLv¦9 Y9¸έ ŎƭŀǳǎŜǎ ŀǊŜ ŎǊŜŀǘŜŘ ŀŎŎƻǊŘƛƴƎ ǘƻ ǘƘŜ ǊŜƭŀǘƛƻƴŀƭ ǎŎƘŜƳŀ όǎee [§3.1.1]).

For all fields that will be declared as foreign keys after the creation of the tables, and that are not

ŀƭǊŜŀŘȅ ǊŜŦŜǊŜƴŎŜŘ ƛƴ ŀ ά¦bLv¦9 Y9¸έ ƛƴŘŜȄΣ ǿŜ ŎǊŜŀǘŜ ŀ ǎƛƳǇƭŜ άY9¸έ ƛƴŘŜȄ ŘǳǊƛƴƎ ǘƘŜ ǘŀōƭŜ

creation. We do that to ensure retro-compatibility of the script, because older versions of MySQL

may not accept the creation of a foreign key if no index is defined on the corresponding field (for

performance reasons10). Newer versions of MySQL automatically create this index if it does not exist,

but by setting it explicitly we make our script compatible also with older versions.

3.2.3. Extended note about AUTO_INCREMENT clauses

It is said above that the AUTO_INCREMENT clause is set on all primary keys of tables which

represents associative relationships of the ER schema, and on tables that have been created to

suppress redundancy from some attribute fields, because such keys does not exist at all in the given

CSV data files. The AUTO_INCREMENT clause thus ensure that distinct, continuous values are

assigned automatically at all rows of the considered table when these rows are added.

For all other id fields (primary keys), there is not AUTO_INCREMENT clause because the value will be

entered to correspond to what is in the CSV data files. This is the best way to design the first version

of the database so that import of all CSV data is easy to do in the next milestone.

This advantage will thus turn into an inconvenient when the database is ready, because when

wanting to add a row (for example a production) through the application interface, we will have to

manually enter a primary key, or at least implement the application such that it automatically find a

non-used value for the primary key and use it immediately.

To correct the situation, we will use DDL commands of the following form AFTER the data have been

ƛƳǇƻǊǘŜŘ όǘƻ ōŜ ŘƻƴŜ ŎƻƴŎǊŜǘŜƭȅ ƛƴ ƳƛƭŜǎǘƻƴŜ нΧύΣ ǎƻ ǘƘŀǘ ŀƭƭ ǇǊƛƳŀǊȅ ƪŜȅ ŦƛŜƭŘǎ ƻŦ ǘƘŜ ŘŀǘŀōŀǎŜ ŀǊŜ

then controlled by a AUTO_INCREMENT clause, facilitating management of data through the

application.

ALTER TABLE `table_name` CHANGE COLUMN `id` `id` INT UNSIGNED AUTO_INCREMENT;

The effect of such command on the primary key field id of the table table_name is to put on it a

AUTO_INCREMENT controller, which starting value is automatically initialized to the current

maximum value of the table plus one.

10 http://dev.mysql.com/doc/refman/5.0/en/innodb-foreign-key-constraints.html

http://dev.mysql.com/doc/refman/5.0/en/innodb-foreign-key-constraints.html

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 17 EPFL

3.2.4. Verification of the correctness of the script

After running the script to create all elements, we can use MySQL Workbench to generate11 the

corresponding visual relational schema in the MySQL formalism. The obtained schema is the

following, visually confirming that everything seems right.

11 http://dev.mysql.com/doc/workbench/en/wb-reverse-engineer-live.html

http://dev.mysql.com/doc/workbench/en/wb-reverse-engineer-live.html

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 18 EPFL

4. Data import

The data are initially given in CSV format. To import them, we built some PHP scripts reading these

CSV files, computing intermediate transformations (like exploding a single CSV line into multiple

relations records) and issuing SQL DML commands.

The detailed report for data importation can be found in Appendix A [§9.1].

4.1. Changes made in database schema

Some simple tests were done on small samples of each CSV file before any real import attempt, to

detect most common error cases and build the scripts based on these observation. All these

preliminary tests leaded to some database schema modifications and corrections, detailed below.

The modifications described below as executed during development are already implemented in the

final DDL SQL code given in [§3.2]. To show the DDL SQL code as it was before these changes were

applied, refer to Appendix A [§9.2].

4.1.1. Data types for indexed texts

As created by default, the VARCHAR fields aǇǇŜŀǊƛƴƎ ƛƴ ƛƴŘŜȄŜǎ ƛƴ ƻǊŘŜǊ ǘƻ ōŜ άǎŜŀǊŎƘŀōƭŜέ ǎǳŦŦŜǊŜŘ

from a problem. The lower/upper case was taken in consideration when searching, which is not what

we wanted. The following script was run, adding a particular collation to the concerned fields, in

order to fix this problem.

ALTER TABLE `name` CHANGE COLUMN `firstname`

 `firstname` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NULL;

ALTER TABLE `name` CHANGE COLUMN `lastname`

 `lastname` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

ALTER TABLE `role` CHANGE COLUMN `name`

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

ALTER TABLE `character` CHANGE COLUMN `name`

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

ALTER TABLE `title` CHANGE COLUMN ̀title`

 `title` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

ALTER TABLE `gender` CHANGE COLUMN `name`

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

ALTER TABLE `company` CHANGE COLUMN `name`

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

ALTER TABLE `country` CHANGE COLUMN `code`

 `code` VARCHAR(2) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

ALTER TABLE `type` CHANGE COLUMN `name`

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

ALTER TABLE `kind` CHANGE COLUMN `name`

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

4.1.2. Length of country codes

By looking at the very first lines of the COMPANY.CSV file when designing database a few weeks ago,

it seemed that all country codes were 2-characters long, ignoring the brackets. But slightly longer

codes have been found by the automated inspection of this file before the import attempt, thus the

size of this field has been enlarged to 10 by the following script.

ALTER TABLE `country` CHANGE COLUMN `code`

 `code` VARCHAR(10) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

4.1.3. Handling of pre-1900 values in YEAR-typed fields

It appeared that some years of productions (both the field year of the production table, and the

fields yearstart and yearend of the serie table) were before 1900, thus cannot be stored by the

specific YEAR MySQL format previously defined for these fields. This format has been changed to

simple INT UNSIGNED by the following script.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 19 EPFL

ALTER TABLE `production` CHANGE COLUMN `year`

 `year` INT UNSIGNED NULL;

ALTER TABLE `serie` CHANGE COLUMN `yearstart`

 `yearstart` INT UNSIGNED NULL;

ALTER TABLE `serie` CHANGE COLUMN `yearend`

 `yearend` INT UNSIGNED NULL;

4.1.4. Changed UNIQUE index in casting

By going through the casting table during inspection before import attempt, it was discovered that

the same person could act as multiple characters in the same production. Thus, the unique key

un_person_prod_role in the casting table was extended to the character_id field by the following

script.

ALTER TABLE `casting` DROP INDEX `un_person_prod_role` ;

ALTER TABLE `casting` ADD UNIQUE INDEX `un_person_prod_role_character`

 (`person_id` , `production_id` , `role_id` , `character_id`);

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 20 EPFL

5. Web application

This chapter explains how the web application is built, what are the main queries used to make it

work, and details the functionalities offered to the user.

In Appendix B [§10] can be found all detailed information that is not crucial to the project

comprehension but that is still interesting and useful to understand the work we did to develop the

application.

Major components offered by the ILARIA framework are described in Appendix B [§10.1].

5.1. Search functionality

With a so large database to manage, the search functionality is considered as the core operation of

the whole application. Thus it is designed to be as efficient as possible on a single laptop, reducing

the primary ǎŜŀǊŎƘ ǘƛƳŜ ƻǾŜǊ ŀƭƭ άǎŜŀǊŎƘŀōƭŜ ŀǊŜŀǎέ ǘƻ ŀ ŎƻǳǇƭŜ ƻŦ ǎŜŎƻƴŘǎΦ

5.1.1. Search queries

In this chapter we present with full details the search queries used.

Productions

¢ƘŜ ǇǊƛƳŀǊȅ ǎŜŀǊŎƘ ǉǳŜǊȅ ŦƻǊ ŦƛƴŘƛƴƎ ǇǊƻŘǳŎǘƛƻƴǎ ƛǎ ŀǎ Ŧƻƭƭƻǿ όƘŜǊŜ ǿŜ ŀǊŜ ǎŜŀǊŎƘƛƴƎ ŦƻǊ άƘǳƴƎŜǊ

ƎŀƳŜǎέύΦ

SELECT DISTINCT PR. `id` , TI_MAIN . `title` , PR. `year` , GE. `name` AS `gender`

FROM ̀production` PR

INNER JOIN (

 SELECT TI . `id` , TI . `production_id` AS `prod_id`

 FROM ̀title` TI

 WHERE TI . `title` COLLATE UTF8_GENERAL_CI LIKE ñ%hunger games%ò

) TI_SEARCH ON PR. `id` = TI_SEARCH. `prod_id`

INNER JOIN `title` TI_MAIN ON PR. `title_id` = TI_MAIN . `id`

LEFT JOIN `gender` GE ON PR. `gender_id` = GE. `id`

GROUP BY PR. `id`

ORDER BY PR. `year` DESC, TI_MAIN . `title` ASC;

By returning the ǇǊƻŘǳŎǘƛƻƴΩǎ ID in the result, it is then possible to add a link on the graphical result

lines, redirecting to the ǇǊƻŘǳŎǘƛƻƴΩǎ main page. The search is done on all titles (main and

alternative), but the resulting productions are displayed by their main titles only.

Persons

The primary search query for finding persons is as follow όƘŜǊŜ ǿŜ ŀǊŜ ǎŜŀǊŎƘƛƴƎ ŦƻǊ άƧŜƴƴƛŦŜǊ

ƭŀǿǊŜƴŎŜέύΦ

SELECT DISTINCT PE. `id` , NA_MAIN. `lastname` , NA_MAIN. `firstname` , PE. `birthdate` ,

PE. `deathdate`

FROM ̀person` PE

INNER JOIN `name` NA_SEARCH ON PE. `id` = NA_SEARCH. `person_id`

INNER JOIN `name` NA_MAIN ON PE. `name_id` = NA_MAIN. `id`

WHERE (

 NA_SEARCH. `lastname` COLLATE UTF8_GENERAL_CI LIKE "%jennifer%"

 OR NA_SEARCH. `lastname` COLLATE UTF8_GENERAL_CI LIKE "%lawrence%"

) AND (

 NA_SEARCH. `firstname` COLLATE UTF8_GENERAL_CI LIKE "%jennifer%"

 OR NA_SEARCH. `firstname` COLLATE UTF8_GENERAL_CI LIKE "%lawrence%"

)

GROUP BY PE. `id`

ORDER BY NA_MAIN. `lastname` ASC, NA_MAIN. `firstname` ASC;

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 21 EPFL

By returning the ǇŜǊǎƻƴΩǎ L5 ƛƴ ǘƘŜ ǊŜǎǳƭǘΣ ƛǘ ƛǎ ǘƘŜƴ ǇƻǎǎƛōƭŜ ǘƻ ŀŘŘ ŀ ƭƛƴƪ ƻƴ ǘƘŜ graphical result lines,

ǊŜŘƛǊŜŎǘƛƴƎ ǘƻ ǘƘŜ ǇŜǊǎƻƴΩǎ Ƴŀƛƴ ǇŀƎŜΦ ¢ƘŜ ǎŜŀǊŎƘ ƛǎ ŘƻƴŜ ƻƴ ŀƭƭ ƴŀƳŜǎ όƳŀƛƴ ŀƴŘ ŀƭǘŜǊƴŀǘƛǾŜύΣ ōǳǘ

the resulting persons are displayed by their main names only.

Lƴ ǘƘŜ ŀōƻǾŜ ŜȄŀƳǇƭŜΣ ǘƘŜ ƻǊƛƎƛƴŀƭ ǎŜŀǊŎƘ ǘŜȄǘ ǿŀǎ άƧŜƴƴƛŦŜǊ ƭŀǿǊŜƴŎŜϦ. In the live application, any

input string is broken down by using space as separator, and a customized query is built dynamically,

ōŀǎŜŘ ƻƴ ǘƘŜ ŀōƻǾŜ ǎŀƳǇƭŜ ǎǘǊǳŎǘǳǊŜΣ ŀŘŘƛƴƎ ŀ άhwέ ŎƭŀǳǎŜ ǘƻ ŜŀŎƘ ǇŀǊǘ ƻŦ ǘƘŜ Ƴŀƛƴ ά!b5έ ŎƭŀǳǎŜ ŦƻǊ

every additional name. When only a single word is specified, the query is simplified to a simple OR

between firstname and lastname on this single word.

Characters

¢ƘŜ ǇǊƛƳŀǊȅ ǎŜŀǊŎƘ ǉǳŜǊȅ ŦƻǊ ŦƛƴŘƛƴƎ ŎƘŀǊŀŎǘŜǊǎ ƛǎ ŀǎ Ŧƻƭƭƻǿ όƘŜǊŜ ǿŜ ŀǊŜ ǎŜŀǊŎƘƛƴƎ ŦƻǊ άŜǾŜǊŘŜŜƴϦύΦ

SELECT DISTINCT CH. `id` , CH. `name` , COUNT(DISTINCT CA. `person_id`) AS `persons_count` ,

COUNT(DISTINCT CA. `production_id`) AS `productions_count`

FROM ̀character` CH

INNER JOIN `casting` CA ON CH. `id` =CA. `character_id`

WHERE CH. `name` COLLATE UTF8_GENERAL_CI LIKE "%everde en%"

GROUP BY CH. `id`

ORDER BY CH. `id` ;

When characters are found, we use their IDs on a button click to open a modal window showing a list

of persons that played that character, retrieved by the following secondary search query. Here the ID

is 2604958 corresponding to Katniss Everdeen.

SELECT DISTINCT PE. `id` , NA. `firstname` , NA. `lastname`

FROM ̀person` PE

INNER JOIN `name` NA ON PE. `name_id` = NA. `id`

INNER JOIN `casting` CA ON PE. `id` = CA. `person_id`

WHERE CA. `character_id` = 2604958 ;

In a similar way, we can open a modal window showing a list of productions in which this character

appeared, retrieved by the following secondary search query.

SELECT DISTINCT PR. `id` , TI . `title` , PR. `year`

FROM ̀production` PR

INNER JOIN `title` TI ON PR. `title_id` = TI . `id`

INNER JOIN `casting` CA ON PR. `id` = CA. `production_id`

WHERE CA. `character_id` = 2604958 ;

¢ƘŜ н ŀōƻǾŜ ǉǳŜǊƛŜǎ ŀǊŜ ǊŜǘǳǊƴƛƴƎ ǇŜǊǎƻƴΩǎΣ ǊŜǎǇŜŎǘƛǾŜƭȅ ǇǊƻŘǳŎǘƛƻƴΩǎ L5Σ ŀƭƭƻǿƛƴƎ ǳǎ ǘƻ Ǉǳǘ ōǳǘǘƻƴǎ

ƻƴ ƛƴǘŜǊŦŀŎŜ ƭŜŀŘƛƴƎ ǘƻ ǘƘŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ǇŜǊǎƻƴΩǎ ƻǊ ǇǊƻŘǳŎǘƛƻƴΩǎ Ƴŀƛƴ ǇŀƎŜΦ

Companies

¢ƘŜ ǇǊƛƳŀǊȅ ǎŜŀǊŎƘ ǉǳŜǊȅ ŦƻǊ ŦƛƴŘƛƴƎ ŎƻƳǇŀƴƛŜǎ ƛǎ ŀǎ Ŧƻƭƭƻǿ όƘŜǊŜ ǿŜ ŀǊŜ ǎŜŀǊŎƘƛƴƎ ŦƻǊ άƭƛƻƴǎƎŀǘŜέύΦ

SELECT DISTINCT COM. `id` AS `id` , COM. `name` AS `name` , COU. `code` AS `country` ,

 COUNT(DISTINCT PC_PROD. `production_id`) AS `produced_count` , COUNT(DISTINCT

 PC_DIST. `production_id`) AS `distributed_count`

FROM ̀company` COM

LEFT JOIN `country` COU ON COM. `country_id` = COU. `id`

INNER JOIN `productioncompany` PC_PROD ON COM. `id` = PC_PROD. `company_id`

 AND PC_PROD. `typ e_id` = (

 SELECT `id` FROM ̀type` WHERE ̀name` ="production companies"

)

INNER JOIN `productioncompany` PC_DIST ON COM. `id` = PC_DIST. `company_id`

 AND PC_DIST. `type_id` = (

 SELECT `id` FROM ̀type` WHERE ̀name` ="distributors"

)

WHERE COM. `name` COLLATE UTF8_GENERAL_CI LIKE "%lionsgate%"

GROUP BY COM. `id`

ORDER BY COM. `name` ;

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 22 EPFL

When companies are found, we use their IDs on a button click to open a modal window showing a

list of movies in which the company is involved as a production company, retrieved by the following

secondary search query. Here the ID is 3293, corresponding to Lionsgate [us].

SELECT DISTINCT PR. `id` AS `id` , TI . `title` AS `title` , PR. `year` AS `year`

FROM ̀production` PR

INNER JOIN `title` TI ON PR. `title_id` = TI . ` id`

INNER JOIN `productioncompany` PC ON PR. `id` = PC. `production_id`

INNER JOIN `type` TY ON PC. `type_id` = TY. `id`

WHERE TY. `name` ="production companies"

 AND PC. `company_id` =3293

ORDER BY PR. `year` DESC, TI . `title` ASC;

In the application, the same query is used a second time for a twin button, leading the the list of

movies in which the company is involved as a distributor. The search parameter άǇǊƻŘǳŎǘƛƻƴ

ŎƻƳǇŀƴƛŜǎέ is simply replaced by άŘƛǎǘǊƛōǳǘƻǊǎέ in the above query.

Genders

The primary search query for finding genders of movies is as follow (here we are searching for

άŀŎǘƛƻƴέύΦ

SELECT DISTINCT GE. `id` AS `id` , GE. `name` AS `name` , COUNT(DISTINCT PR. `id`) AS

 `count_prod`

FROM ̀gender` GE

INNER JOIN `production` PR ON GE. `id` = PR. `gender_id `

WHERE GE. `name` COLLATE UTF8_GENERAL_CI LIKE "%action%"

GROUP BY GE. `id`

ORDER BY GE. `name` ;

When genders are found, we use their IDs on a button click to open a modal window showing a list of

movies having this gender, retrieved by the following secondary search query. Here the ID is 19,

corresponding to action.

SELECT DISTINCT PR. `id` AS `id` , TI . `title` AS `title` , PR. `year` AS `year`

FROM `production` PR

INNER JOIN `title` TI ON PR. `title_id` = TI . `id`

INNER JOIN `gender` GE ON PR. `gender_id` = GE. `i d`

WHERE GE. `id` =19

ORDER BY PR. `year` DESC, TI . `title` ASC;

5.1.2. Graphical interface

The search form is composed of 2 parts.

¶ ! άǎƛƳǇƭŜ ǉǳŜǊȅέ Ŏŀƴ ōŜ ŘƻƴŜΣ ǎŜŀǊŎƘƛƴƎ ǎƛƳǳƭǘŀƴŜƻǳǎƭȅ ǘƘǊƻǳƎƘ ŀƭƭ ǘƘŜ ǇǊƛƳŀǊȅ ǎŜŀǊŎƘ

queries presented above.

¶ !ƴ άŀŘǾŀƴŎŜŘ ǉǳŜǊȅέ Ŏŀƴ be done, specifying which primary search queries must be

launched.

This 2 parts are presented to the user in a collapsible accordion for better visual comprehension of

the search possibilities.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 23 EPFL

The 2 search forms expanded for the purpose of this report

When a simple search is done, a screen like the following is displayed.

! ǊŜǎǳƭǘ ǎŎǊŜŜƴ ǎŀƳǇƭŜ ŦƻǊ άŜǾŜǊŘŜŜƴϦ

Each of the 5 result sections is an AJAX-loaded data array, linked to the corresponding primary search

query.

In the case of an advanced search, only sections that are checked on the advanced form will be

displayed on the result page and thus loaded by AJAX queries.

In the characters, companies and genres result arrays, grey buttons with counts (for actors and

movies, in the case of characters as shown on above picture) are calling secondary search queries

and loading the result in the modal window.

In the persons, productions and companies result arrays, blue buttons with arrows are redirecting to

the main pages for these elements.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 24 EPFL

5.2. Main pages

The application offers main pages for viewing the details of productions, persons and companies.

hǘƘŜǊ ŜƴǘƛǘƛŜǎ ŘƻƴΩǘ ƘŀǾŜ ŘŜŘƛŎŀǘŜŘ Ƴŀƛƴ ǇŀƎŜǎ ōŜŎŀǳǎŜ ǘƘŜ ǎŜŀǊŎƘ ŦǳƴŎǘƛƻƴŀƭƛǘȅΩǎ ǾŀǊƛƻǳǎ ƳƻŘŀƭ

windows are sufficient to accessing all their details efficiently and conveniently.

5.2.1. tŜǊǎƻƴΩǎ Ƴŀƛƴ ǇŀƎŜ

The following picture presents the main page of a person.

WŜƴƴƛŦŜǊ [ŀǿǊŜƴŎŜΩǎ Ƴŀƛƴ ǇŀƎŜΣ ǘǊǳƴŎŀǘŜŘ ǾŜǊǘƛŎŀƭƭȅ

¢ƘŜ ŀōƻǾŜ ǇƛŎǘǳǊŜ ƛǎ ǘǊǳƴŎŀǘŜŘ ŦƻǊ ǇǊŀŎǘƛŎŀƭ ǊŜŀǎƻƴǎΦ ¢ƘŜ άtƭŀȅŜŘ ƛƴ ƳƻǾƛŜǎέ ƛǎ нл ŜƭŜƳŜƴǘǎ ƭƻƴƎΣ ǿƛǘƘ

pagƛƴŀǘƛƻƴ ǾƛǎƛōƭŜ ƛƴ ǘƘŜ ǳǇǇŜǊ ǊƛƎƘǘ ŎƻǊƴŜǊΦ ! ǎƛƳƛƭŀǊ ƭƛǎǘΣ ǿƛǘƘ ǘƘŜ ŜȄǇƭƛŎƛǘ ǘƛǘƭŜ άtƭŀȅŜŘ ƛƴ ǎŜǊƛŜǎέ ƛǎ

present just below it, thus clearly separating these 2 kinds of elements. Episodes are implicitly

included in the series, with modal windows to accessing corresponding lists.

¢ƘŜ άtƭŀȅŜŘ ƛƴ ƳƻǾƛŜǎέΣ άtƭŀȅŜŘ ƛƴ ǎŜǊƛŜǎέ ŀƴŘ ά!ƭǘŜǊƴŀǘƛǾŜ ƴŀƳŜǎέ ƭƛǎǘǎ ŀǊŜ !W!·-loaded, thus

ǎǇŜŜŘƛƴƎ ǳǇ ǘƘŜ Ƴŀƛƴ ǇŀƎŜ ƭƻŀŘƛƴƎ ŀƴŘ ŀǇǇŀǊƛǘƛƻƴ ƻŦ ǘƘŜ Ƴŀƛƴ ŜƭŜƳŜƴǘǎ όƴŀƳŜΣ ōƛǊǘƘŘŀǘŜΣ ŜǘŎΧύΦ

vǳŜǊƛŜǎ ǳǎŜŘ ǘƻ ƭƻŀŘ ǘƘƛǎ ǇŀƎŜΩǎ Řŀǘŀ ŀǊŜ given in Appendix B [§10.2.1].

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 25 EPFL

5.2.2. tǊƻŘǳŎǘƛƻƴΩǎ Ƴŀƛƴ ǇŀƎŜ

The following picture presents the main page of a production.

¢ƘŜ IǳƴƎŜǊ DŀƳŜΩǎ Ƴŀƛƴ ǇŀƎŜ

¢ƘŜ ά/ŀǎǘƛƴƎέΣ ά/ƻƳǇŀƴƛŜǎ ƛƴǾƻƭǾŜŘέ ŀƴŘ ά!ƭǘŜǊƴŀǘƛǾŜ ǘƛǘƭŜǎέ data arrays are AJAX-loaded.

The above main page presents the graphical configuration of a singleproduction kind of production.

Lƴ ǘƘŜ ŎŀǎŜ ƻŦ ŀƴ ŜǇƛǎƻŘŜΣ ǘƘŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ǎŜǊƛŜΩǎ ƴŀƳŜΣ ǎŜŀǎƻƴ ŀƴŘ ŜǇƛǎƻŘŜ ƴǳƳōŜǊǎ ǿƻǳƭŘ

appear in the upper right general infos tab. In the case of a serie, a fourth AJAX-loaded list is added,

with the list of seasons and buttons to load using AJAX the lists of episodes in a season in the modal

window.

