
Group 15 EPFL
243163 – Diego Antognini CS-322 Introduction to database systems
244270 – Jason Racine 20.05.2015
224295 – Alexandre Veuthey

IMDB Project

Final report

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 2 EPFL

0. Summary

1. Introduction.. 3

1.1. Technologies .. 3

2. Conceptual design ... 5

2.1. Metadata and data analysis.. 5

2.2. Entity-Relationship schema (ER) .. 6

3. Logical design ... 9

3.1. Relational schema ... 9

3.2. DDL SQL code ... 12

4. Data import .. 18

4.1. Changes made in database schema .. 18

5. Web application .. 20

5.1. Search functionality ... 20

5.2. Main pages .. 24

5.3. Inserting, updating and deleting entities .. 27

6. Simple queries (milestone 2) ... 36

6.1. SQL code .. 36

6.2. Application dedicated page ... 40

7. Interesting queries (milestone 3) ... 42

7.1. SQL code .. 42

7.2. Application dedicated page ... 47

8. Detailed queries analysis ... 51

8.1. Necessity of indexes ... 51

8.2. Distribution of the cost .. 58

8.3. Running times of all queries .. 59

9. Appendix A – Data import detailed report ... 61

9.1. Imported files ... 61

9.2. SQL DDL code before milestone 2 modification... 65

10. Appendix B – Web application detailed .. 69

10.1. Major components .. 69

10.2. Main pages queries ... 70

10.3. Insert, update and delete procedures .. 74

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 3 EPFL

1. Introduction

The goal of this report is to present our work for the project due to EPFL’s CS-322 “Introduction to

database systems” course. Realized application consists of a database designed and implemented on

the basis of simple data files and short description given at the beginning of the project, coupled to a

simple web application to manage and query this database. The stored data corresponds to some

movies and series with simple relations such as actors, extracted from the IMDB movies database1.

1.1. Technologies

As we had full choice about the tools and software we use for this project, here is a list of the main

components we used and the reason of “why these and not others ?”.

1.1.1. Database management system (DBMS)

We were offered to use some dedicated Oracle2 server, internal to EPFL. The major inconvenient of

this solution was that we won’t be able to work on this project in locations where no easy Internet

access is provided, like trains, and we would become dependent of the availability of the server.

Instead, we chose to locally install and use MySQL Community Edition3, with the following argument

about this choice.

 It is totally free and wide-used, essentially in the world of web applications, which kind of

application we chosed to build (see [§1.1.2]) ;

 it comes with MySQL Workbench4, a powerful dedicated tool to model schemas, manage

graphically the DBMS parameters, check queries are working and so on ;

 it is available on all major OS, which can be useful as we have different kinds of computers

with different OS families installed.

More precisely, we use the following versions of the DBMS and tools.

 MySQL 5.6.23

 MySQL Workbench 6.2.4

 MySQL Utilities 1.5.3

1.1.2. Graphical application development

We had full choice about the programming language and API technologies we want to use to develop

the graphical application that has to come out as a result for this project.

As already having experience in such kind of development, we decided to create a web application

based on the following servers and tools.

 Apache5 2.4.12, as the web server

 PHP6 5.5.0, as the server-side programming technology

 jQuery7 2.1.3, as the client-side programming framework

1 http://www.imdb.com
2 http://www.oracle.com/fr/database/overview/index.html
3 http://dev.mysql.com/downloads/
4 http://dev.mysql.com/downloads/workbench/
5 http://httpd.apache.org
6 http://php.net
7 https://jquery.com

http://www.imdb.com/
http://www.oracle.com/fr/database/overview/index.html
http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/workbench/
http://httpd.apache.org/
http://php.net/
https://jquery.com/

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 4 EPFL

 Twitter’s bootstrap8 3.3.4, as the graphical enhancement framework

The application is strongly based on AJAX requests9 to gather heavy data sets and execute long-

running requests while informing user on the current progress status.

The development is enhanced by the ILARIA toolset, a powerful PHP framework developed by Jason

Racine, one of our team’s member. This framework provides the following operations to speed up

development.

 Full MVC (Model-View-Controller) paradigm

 Internal management and handling of asynchronous requests

 MySQL high-level abstraction layer to ease SQL commands building and management

 Enhanced security and errors protection

8 http://getbootstrap.com
9 http://fr.wikipedia.org/wiki/Ajax_(informatique)

http://getbootstrap.com/
http://fr.wikipedia.org/wiki/Ajax_(informatique)

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 5 EPFL

2. Conceptual design

In this chapter, we analyse the data and metadata that are given at the start point of the project and

mix them together into a Entity-Relational (ER) schema and a set of out-of-model constraints.

2.1. Metadata and data analysis

Here we do a hypothesis-based analysis of parts of the data and their metadata (in fact, just column

names) we were given. This will be used in [§2.2] to justify parts of the ER schema.

2.1.1. “PERSON” and “ALTERNATIVE_NAME”

These 2 files are obviously linked by the fact that a person can have multiple alternative names,

which is confirmed by the presence of the “person_id” field in “ALTERNATIVE_NAME”. In “PERSON”

as well as in “ALTERNATIVE_NAME”, the “name” field seems to be always constructed in the same

way, starting by the last name, followed by a comma, and then the first name(s). Sometimes, there is

only one name without coma, suggesting it’s just the “main name”, let’s say last name. This field is to

be split into 2 distinct fields “lastname” and “firstname” by parsing during the data import.

We also remark that the field “gender” in “PERSON” contains always values “m” and “f”, obviously

describing if the person is a man or a woman. This is a candidate field to be exported as a separate

entity set in ER schema.

2.1.2. “PRODUCTION” and “ALTERNATIVE_TITLE”

These 2 files are also linked in a similar way as “PERSON” and “ALTERNATIVE_NAME” (see [§2.1.1]).

By digging into “PRODUCTION”, we see that there are 3 types of productions to consider.

 The single movies, that are registered once with all their informations ;

 the series, that are registered as a grouping element for episodes that they contain ;

 the episodes, linked to particular serie through the “series_id” field, and also registering a

particular “season_number” and “episode_number” relative to the serie it belongs to.

This repartition of productions is a clear candidate to be modelled as a “ISA” hierarchy in the ER

schema. More importantly, the season concept which is only present through the “season_number”

field is a perfect candidate to be exported as a separate entity set in the ER schema, adding a level of

hierarchy and thus helping to ensure consistency of the data.

The “gender” and “kind” fields of “PRODUCTION” are also good candidates for such export, as they

contain highly-repeated values that cleary consist of a finite set of genders and kinds of movies,

except for the “episode” and “tv_series” values of “kind” that are modelled through the “ISA”

hierarchy.

2.1.3. “COMPANY” and “PRODUCTION_COMPANY”

The “COMPANY” file contains listing of companies. By digging into it, we can rapidly show that the

“country_code” field is highly-repeating, so it is a candidate to be exported in a separate entity set in

the ER schema.

The “PRODUCTION_COMPANY” file acts as an associative relationship between “PRODUCTION” and

“COMPANY”. By digging into it, we easily see that a company can be involved in multiple productions,

and that a production needs the participation of multiple companies, thus giving a N:N relationship in

the incoming ER schema, with a supplementary attribute for the type of company, that describes

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 6 EPFL

some sort of “role” the company played in the production (production company or distributor). This

attribute is thus also a good candidate to be exported as a separate entity set to reduce redundancy.

2.1.4. “PRODUCTION_CAST” and “CHARACTER”

The “PRODUCTION_CAST” file acts as an associative relationship between “PRODUCTION”, “PERSON”

and “CHARACTER”, with a supplementary “role” value. This value is clearly repeating, making it a

good candidate to be modelled as a separate entity set in the ER schema. By exploring the file, we

also see that the “production_id”, “person_id” and “role” are always filled, thus always telling that a

person participated in a production as a particular role. This is to be modelled as a ternary

relationship set in the ER model. But because the “character_id” is not always filled, we need to be

careful and think about modelling it as a second relationship set, linking the aggregation of our first

relationship set to the entity set corresponding to the file “CHARACTER”.

Finally, the “CHARACTER” file is just a listing of the characters played in movies. By making a quick

test with the search function of a basic text editor into “PRODUCTION_CAST”, it seems that some

characters appears in multiple productions, either referenced by the exact same key or by having

multiple instances of it in the “CHARACTER” file with slightly different names (e.g. “James Bond”,

“James Bond 007”, “007 James Bond”, …). This will be hard to make this proper, but this is not the

purpose of the first milestone of this project.

2.2. Entity-Relationship schema (ER)

The conceptual design of the database is achieved using the same ER formalism as the one seen in

course. The schema can be found on the next page, followed by a set of out-of-model constraints,

these are constraints that apply to the data model to ensure its correctness, but that can’t be

modelled by the chosen formalism (and more importantly, that any DBMS cannot ensure at all, it’s

up to the applicative part to deal later with these problems).

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 7 EPFL

2.2.1. ER schema

2.2.2. Caption

Blue entity sets

Turquoise attributes

Magenta relationship sets

- - - - - - - aggregation

_______ ISA hierarchy

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 8 EPFL

2.2.3. Out-of-model constraints

These are the constraints that cannot be modelled on the ER schema, and that will not be ensured by

the DMBS but by the application.

1. For each instance of MainName, the referenced Name must belong to the referenced Person

through an instance of NameToPerson ;

2. For each instance of MainTitle, the referenced Title must belong to the referenced

Production through an instance of TitleToProduction.

2.2.4. Account for design choices

Hereafter, we talk about the main design choices we did and some particularities of the method we

used to design this database.

Name, MainName and NameToPerson

The entity set Name corresponds to the “ALTERNATIVE_NAME” file described in [§2.1.1]. We

removed the “alternative” part because the main name, originally the field “name” in “PERSON”, is

also modelled through this table. The NameToPerson relationship is the main link between Person

and Name. This makes Name a weak entity, because a name has no sense without its owner. The

MainName relationship is the cleanest way of ensuring that each Person has exactly one main name.

This leads to the first out-of-model constraint defined in [§2.2.3].

Title, MainTitle and TitleToProduction

The entity set Title corresponds to the “ALTERNATIVE_TITLE” file described in [§2.1.2]. We removed

the “alternative” part in a similar fashion as for Name, described above. The TitleToProduction

relationship is the main link between Production and Title. This makes Title a weak entity, because a

title has no sense without its owning production. The MainTitle relationship is the cleanest way of

ensuring that each Production has exactly one main title. This leads to the second out-of-model

constraint defined in [§2.2.3].

field gender of Person

We chosed to not export this field as a separate entity set, despite what was described in [§2.1.1],

because this is a single letter which can be managed by the applicative part of the project. This

alternative is more efficient than setting a foreign key and the indexes it involves just for a single

character. Thus, searching for all women in the Person entity set is just searching through the

indexed column gender for all ‘f’. If we did it with a separate entity set, we had to search through it

for the ‘id’ of ‘f’ (let’s say, 1), then doing a similar search than before but for all ‘1’.

aggregation around Casting

We made Casting a 3-ary relationship, linked to Character through PlayCharacter, instead of making

Casting a 4-ary, because not all instances of Casting are linked to a Character.

ISA architecture

As suggested in [§2.1.2], the best way to model the different kinds of productions is to use a ISA

hierarchy. Here we chosed to separate “singles movies” into SingleProduction and apply a covering

constraint on the ISA hierarchy, to make things clearer into the resulting database. We also modelled

the “seasons” concept as a separate entity set, not part of the ISA hierarchy (because in the original

“PRODUCTION” file the seasons are just discerned by numbers in a column, they do not have rows

for them), so things are clearly hierarchized, thus making the future queries easier to build.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 9 EPFL

3. Logical design

In this chapter, we translate the ER schema defined in [§2.2] into a purely relational schema, thus

choosing data types (domains) for the attributes and determining whether relationship sets becomes

foreign keys or associative tables. This schema is then implemented as a MySQL database.

3.1. Relational schema

Here, we describe the relational schema in a textual form, then justify our main choices about the

translation of the ER schema into this relational schema.

3.1.1. Textual schema

This schema is given by alphabetic order of the relations names. Underlined attributes corresponds

to the primary key for the corresponding table. Foreign keys are indicated under each relation

description in green. Unicity constraints are indicated under each relation in blue. Attributes in bold

are mandatory ones; ones not in bold can be omitted (NULL authorized).

casting(id: INT, person_id: INT, production_id: INT, role_id: INT, character_id: INT)

 person_id references person.id

 production_id references production.id

 role_id references role.id

 character_id references character.id

 (person_id, production_id, role_id) must be unique

character(id: INT, name: VARCHAR(255))

 (name) must be unique

company(id: INT, name: VARCHAR(255), country_id: INT)

 country_id references country.id

 (name, country_id) must be unique

country(id: INT, code: VARCHAR(2))

 (code) must be unique

episode(id: INT, number: INT, season_id: INT)

 season_id references season.id

 id references production.id (part of the ISA hierarchy)

 (number, season_id) must be unique

gender(id: INT, name: VARCHAR(255))

 (name) must be unique

kind(id: INT, name: VARCHAR(255))

 (name) must be unique

name(id: INT, firstname: VARCHAR(255), lastname: VARCHAR(255), person_id: INT)

 person_id references person.id

 (firstname, lastname, person_id) must be unique

person(id: INT, gender: VARCHAR(1), trivia: TEXT, quotes: TEXT, birthdate: DATE, deathdate: DATE,

birthname: TEXT, minibiography: TEXT, spouse: VARCHAR(255), height: FLOAT, name_id: INT)

 name_id references name.id

 (name_id) must be unique

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 10 EPFL

production(id: INT, year: INT, title_id: INT, gender_id: INT)

 title_id references title.id

 gender_id references gender.id

 (title_id) must be unique

productioncompany(id: INT, production_id: INT, company_id: INT, type_id: INT)

 production_id references production.id

 company_id references company.id

 type_id references type.id

 (production_id, company_id, type_id) must be unique

role(id: INT, name: VARCHAR(255))

 (name) must be unique

season(id: INT, number: INT, serie_id: INT)

 serie_id references serie.id

 (number, serie_id) must be unique

serie(id: INT, yearstart: INT, yearend: INT)

 id references production.id (part of the ISA hierarchy)

singleproduction(id: INT, kind_id: INT)

 id references production.id (part of the ISA hierarchy)

 kind_id references kind.id

title(id: INT, title: VARCHAR(255), production_id: INT)

 production_id references production.id

 (title, production_id) must be unique

type(id: INT, name: VARCHAR(255))

 (name) must be unique

3.1.2. Account for translation choices

We made the following main choices when translating the conceptual schema into a relational one.

casting and its aggregation

The Casting relationship defined in the ER schema, and its aggregation used in the PlayCharacter

relationship upon the Character entity, are translated to a single associative relation casting in the

above relational schema, with the particularity that the character_id field can be NULL, meaning that

no PlayCharacter instance exist for the given Casting instance. This seems more efficient to group

them both in a single relation instead of having 2 different relations with more foreign keys to

manage.

use of id fields in the associative relations

In the casting and companytype relations, an id field is always introduced, totally inexistent in the

original data given as CSV files, declared as the primary keys for these relations. Thus, a unicity

constraint is set over the foreign keys involved in the relation. It is generally admitted that it is better

when designing a database to associate each relation a single, one-field primary key than composing

complex primary keys with multiple fields, even if this seems more logical to do. The reason for that

is that when we want to improve the database, adding more relations into it, it is easier having only

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 11 EPFL

one field to use as a foreign key to reference another relation than to have several fields to use as a

foreign key.

data types

For all key fields (primary and obviously foreign), the data type is INT, which seems logical and non-

controversing in most cases. In particular, all “id” fields given in the CSV data files are numerical, and

for the primary keys that are to be generated during data import (those of associative relations that

do not appear directly in CSV files) MySQL has a functionality called “AUTO_INCREMENT” that acts

only on INT type and its variants (UNSIGNED, BIGINT, TINYINT, ...) We can work only with INT

UNSIGNED, having ∼ 232 ≅ 4 ∙ 109 possible values, as all given data files have at most 10’s of

millions of entries.

Then, MySQL has special, dedicated data types for things like dates and years. In particular, by using

the type DATE for data-like fields, it become easier in the queries to make calculations on those

fields. When storing years, we originally used the YEAR data type, but as discussed in [§4.1.3], it was

impossible to store pre-1900 values, so we changed it to INT to ensure everything is fine.

The textual fields are then divided into 3 groups.

 When the length can be arbitrarily long (biography, quotes, etc…) and no specific queries

have to be executed on these fields, they are assigned the type TEXT, which can contain

(theoretically) infinite texts, but for which indexation is hard to configure (because index

must be specified on a maximum length, which cannot be infinite like the size of the

corresponding field…) ;

 when the length is supposed to be quite limited (names, titles, etc…) and the fields appear to

be used in specific queries of milestones 2 and 3, they are assigned the type VARCHAR(255),

which can contain up to 255. It is then easy to put indexes on these fields. The exact value

255 is the more commonly used for such field, because it is quite large but is the larger

number that can be encoded on 8 bits. As the length of a VARCHAR is stored with each

instance of the corresponding attribute, 255 is thus the larger number of characters we can

count without requiring adding a second metadata byte to count numbers >255 ;

 when the length is precisely known (1 for the gender of persons, 2 for country codes, …), the

type VARCHAR(x) with x the precisely known length is assigned.

translation of the ISA hierarchy

We chosed to implement the ISA hierarchy described in the ER schema by keeping all entities

involved into it (the parent as well as the children), linking them by their primary keys id. While it is a

covering, non-overlapping ISA architecture, the parent entity set (Production) has its own attributes

and is involved in external relationships, in which in particular ProductionCompany is of cardinality

N:N, thus complicating things if we only keep the children relations.

3.1.3. Unacknowledged constraints

In this relational schema, lots of constraints previously specified are not present, and thus need to be

acknowledged here before writing down the SQL code to create tables.

 The 2 out-of-model constraints declared for ER schema in [§2.2.3], which will be

implemented by the application as no database mechanism can ensure that ;

 all weak entities of the ER schema (Name, Title, Season, Episode) will be ensured weak in the

SQL code through the “ON DELETE CASCADE” directives ;

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 12 EPFL

 the non-overlapping property of the ISA architecture will have to be checked by the

application.

3.2. DDL SQL code

Hereafter is the SQL code that creates the tables and sets up the links (foreign keys) between them,

compatible with the MySQL DBMS. The creation of the schema and database, as well as the

management of the users and their rights to access database is not discussed here.

3.2.1. MySQL DDL code

-- 1. Create tables with unlinked columns, primary keys, unique indexes and simple indexes on

future foreign keys

CREATE TABLE `name` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `firstname` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NULL,
 `lastname` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL,
 `person_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_first_last_person` (`firstname`, `lastname`, `person_id`)

);

CREATE TABLE `person` (

 `id` INT UNSIGNED,

 `gender` VARCHAR(1) NULL,

 `trivia` TEXT NULL,

 `quotes` TEXT NULL,

 `birthdate` DATE NULL,

 `deathdate` DATE NULL,

 `birthname` TEXT NULL,

 `minibiography` TEXT NULL,

 `spouse` VARCHAR(255) NULL,

 `height` FLOAT NULL,

 `name_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_main_name` (`name_id`)

);

CREATE TABLE `role` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL,
 PRIMARY KEY (`id`),

 UNIQUE KEY `un_name` (`name`)

);

CREATE TABLE `character` (

 `id` INT UNSIGNED,

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL,
 PRIMARY KEY (`id`),

 UNIQUE KEY `un_name` (`name`)

);

CREATE TABLE `production` (

 `id` INT UNSIGNED,

 `year` INT UNSIGNED NULL,

 `title_id` INT UNSIGNED NOT NULL,

 `gender_id` INT UNSIGNED NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_main_title` (`title_id`),

 KEY `idx_gender` (`gender_id`)

);

CREATE TABLE `casting` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `person_id` INT UNSIGNED NOT NULL,

 `production_id` INT UNSIGNED NOT NULL,

 `role_id` INT UNSIGNED NOT NULL,

 `character_id` INT UNSIGNED NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_person_prod_role_character` (`person_id`, `production_id`, `role_id`,

 `character_id`)

);

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 13 EPFL

CREATE TABLE `title` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `title` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL,
 `production_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_title_production` (`title`, `production_id`)

);

CREATE TABLE `gender` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL,
 PRIMARY KEY (`id`),

 UNIQUE KEY `un_name` (`name`)

);

CREATE TABLE `company` (

 `id` INT UNSIGNED,

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL,
 `country_id` INT UNSIGNED NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_name_country` (`name`, `country_id`)

);

CREATE TABLE `country` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `code` VARCHAR(10) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL,
 PRIMARY KEY (`id`),

 UNIQUE KEY `un_code` (`code`)

);

CREATE TABLE `type` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL,
 PRIMARY KEY (`id`),

 UNIQUE KEY `un_name` (`name`)

);

CREATE TABLE `singleproduction` (

 `id` INT UNSIGNED,

 `kind_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 KEY `idx_kind` (`kind_id`)

);

CREATE TABLE `kind` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL,
 PRIMARY KEY (`id`),

 UNIQUE KEY `un_kind_name` (`name`)

);

CREATE TABLE `season` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `number` INT NULL,

 `serie_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_serie_number` (`serie_id`, `number`)

);

CREATE TABLE `serie` (

 `id` INT UNSIGNED,

 `yearstart` INT UNSIGNED NULL,

 `yearend` INT UNSIGNED NULL,

 PRIMARY KEY (`id`)

);

CREATE TABLE `episode` (

 `id` INT UNSIGNED,

 `number` INT NULL,

 `season_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_season_number` (`season_id`, `number`)

);

CREATE TABLE `productioncompany` (

 `id` INT UNSIGNED,

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 14 EPFL

 `production_id` INT UNSIGNED NOT NULL,

 `company_id` INT UNSIGNED NOT NULL,

 `type_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_production_company` (`production_id`, `company_id`, `type_id`)

);

-- 2. add all foreign keys constraints that are on schema

ALTER TABLE `name`

 ADD CONSTRAINT `fk_nametoperson` FOREIGN KEY (`person_id`) REFERENCES `person` (`id`)

 ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `person`

 ADD CONSTRAINT `fk_mainname` FOREIGN KEY (`name_id`) REFERENCES `name` (`id`)

 ON DELETE RESTRICT ON UPDATE CASCADE;

ALTER TABLE `production`

 ADD CONSTRAINT `fk_maintitle` FOREIGN KEY (`title_id`) REFERENCES `title` (`id`)

 ON DELETE RESTRICT ON UPDATE CASCADE,

 ADD CONSTRAINT `fk_productionhasgender` FOREIGN KEY (`gender_id`)

 REFERENCES `gender` (`id`) ON DELETE SET NULL ON UPDATE CASCADE;

ALTER TABLE `casting`

 ADD CONSTRAINT `fk_casting_person` FOREIGN KEY (`person_id`) REFERENCES `person` (`id`)

 ON DELETE CASCADE ON UPDATE CASCADE,

 ADD CONSTRAINT `fk_casting_role` FOREIGN KEY (`role_id`) REFERENCES `role` (`id`)

 ON DELETE RESTRICT ON UPDATE CASCADE,

 ADD CONSTRAINT `fk_casting_production` FOREIGN KEY (`production_id`)

 REFERENCES `production` (`id`) ON DELETE CASCADE ON UPDATE CASCADE,

 ADD CONSTRAINT `fk_casting_character` FOREIGN KEY (`character_id`)

 REFERENCES `character` (`id`) ON DELETE SET NULL ON UPDATE CASCADE;

ALTER TABLE `title`

 ADD CONSTRAINT `fk_titletoproduction` FOREIGN KEY (`production_id`)

 REFERENCES `production` (`id`) ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `company`

 ADD CONSTRAINT `fk_companyhascountry` FOREIGN KEY (`country_id`)

 REFERENCES `country` (`id`) ON DELETE SET NULL ON UPDATE CASCADE;

ALTER TABLE `season`

 ADD CONSTRAINT `fk_seasonhasserie` FOREIGN KEY (`serie_id`) REFERENCES `serie` (`id`)

 ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `episode`

 ADD CONSTRAINT `fk_episodehasseason` FOREIGN KEY (`season_id`) REFERENCES `season` (`id`)

 ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `singleproduction`

 ADD CONSTRAINT `fk_singleproduction_has_kind` FOREIGN KEY (`kind_id`)

 REFERENCES `kind` (`id`) ON DELETE RESTRICT ON UPDATE CASCADE;

ALTER TABLE `productioncompany`

 ADD CONSTRAINT `fk_productioncompany_production` FOREIGN KEY (`production_id`)

 REFERENCES `production` (`id`) ON DELETE CASCADE ON UPDATE CASCADE,

 ADD CONSTRAINT `fk_productioncompany_company` FOREIGN KEY (`company_id`)

 REFERENCES `company` (`id`) ON DELETE CASCADE ON UPDATE CASCADE,

 ADD CONSTRAINT `fk_productioncompany_type` FOREIGN KEY (`type_id`)

 REFERENCES `type` (`id`) ON DELETE RESTRICT ON UPDATE CASCADE;

-- 3. add foreign keys constraints relative to "ISA" architecture

ALTER TABLE `serie`

 ADD CONSTRAINT `fk_serie_isa_production` FOREIGN KEY (`id`) REFERENCES `production` (`id`)

 ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `episode`

 ADD CONSTRAINT `fk_episode_isa_production` FOREIGN KEY (`id`)

 REFERENCES `production` (`id`) ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `singleproduction`

 ADD CONSTRAINT `fk_singleproduction_isa_production` FOREIGN KEY (`id`)

 REFERENCES `production` (`id`) ON DELETE CASCADE ON UPDATE CASCADE;

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 15 EPFL

3.2.2. Method for writing SQL DDL code

The above SQL code is highlighted by colours according to the following list.

 Keywords keywords of the language, defining tables and constraints

 Identificators names of tables, attributes, constraints, etc…

 They are “backticks quoted”, as this is the way to ensure that if an identificator

 accidentally (or voluntarily…) contain a keyword of MySQL, it will not be

 interpreted as a keyword at all.

 Data types MySQL data types for each attributes

 They are set according to the relational schema (see [§3.1.1]). Keys (primary

 and foreign) are defined as UNSIGNED to gain 1 bit, because keys are never

 negative.

 Null cond. These are constraints that specify whether a field can be set to NULL (no value)

 or not. MySQL has a default value when it is not specified, but assuming

 default values when building a script is always a bad idea, as default values

 might change from a version to another. For “id” fields, it is not necessary to

 specify “NOT NULL”, because it is a mandatory implication of the use of the

 “PRIMARY KEY” clause.

 ON … clauses These clauses specify what to do when a primary key referenced by a foreign

 is updated or its corresponding row is deleted from the referenced table.

 AUTO_INCREMENT clauses are set on primary keys of associative tables, as well as exported

 tables that were originally redundant attributes, for which no data exist at all

 in the given CSV data files.

The “ON UPDATE” clauses are always set to CASCADE as this enable us (DBA) to migrate the database

to other servers with possible implications need on the numerical format of the keys with some ease

of data update.

The “ON DELETE” clauses are set according to the following method :

 If the foreign key is defined in a weak entity, referencing the weak relationship according to

the ER schema, we use “ON DELETE CASCADE” because the weak entity cannot exist without

the entity it is linked on, by definition ;

 if the foreign key is referencing a table that acts as a limited list of values (genders of

productions, for example), we use “ON DELETE RESTRICT”, thus preventing the deletion of a

value from the list when it is in use ;

 if the foreign key is defined for the purpose of an ISA hierarchy, we use “ON DELETE CASCADE”,

as when the parent goes away, its children (representing other aspects of the same entity)

must also go away ;

 when the foreign key can be set to NULL, we generally use “ON DELETE SET NULL”.

The creation of the foreign key constraints is entirely done separately at the end of the script for 2

major reasons.

 There are some circular relationships, that are a table A referencing a table B while the table B

references the table A. As a foreign key cannot be created until the referenced table exist, at

least one of the 2 foreign key in the case of a circular relationship must be created afterwards ;

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 16 EPFL

 As for the above reason we need to create few foreign keys after corresponding tables have

been created, it is then more readable to create them all after all tables have been created,

otherwise we have lots of places to look at to find all foreign keys while reading the script.

The “UNIQUE KEY” clauses are created according to the relational schema (see [§3.1.1]).

For all fields that will be declared as foreign keys after the creation of the tables, and that are not

already referenced in a “UNIQUE KEY” index, we create a simple “KEY” index during the table

creation. We do that to ensure retro-compatibility of the script, because older versions of MySQL

may not accept the creation of a foreign key if no index is defined on the corresponding field (for

performance reasons10). Newer versions of MySQL automatically create this index if it does not exist,

but by setting it explicitly we make our script compatible also with older versions.

3.2.3. Extended note about AUTO_INCREMENT clauses

It is said above that the AUTO_INCREMENT clause is set on all primary keys of tables which

represents associative relationships of the ER schema, and on tables that have been created to

suppress redundancy from some attribute fields, because such keys does not exist at all in the given

CSV data files. The AUTO_INCREMENT clause thus ensure that distinct, continuous values are

assigned automatically at all rows of the considered table when these rows are added.

For all other id fields (primary keys), there is not AUTO_INCREMENT clause because the value will be

entered to correspond to what is in the CSV data files. This is the best way to design the first version

of the database so that import of all CSV data is easy to do in the next milestone.

This advantage will thus turn into an inconvenient when the database is ready, because when

wanting to add a row (for example a production) through the application interface, we will have to

manually enter a primary key, or at least implement the application such that it automatically find a

non-used value for the primary key and use it immediately.

To correct the situation, we will use DDL commands of the following form AFTER the data have been

imported (to be done concretely in milestone 2…), so that all primary key fields of the database are

then controlled by a AUTO_INCREMENT clause, facilitating management of data through the

application.

ALTER TABLE `table_name` CHANGE COLUMN `id` `id` INT UNSIGNED AUTO_INCREMENT;

The effect of such command on the primary key field id of the table table_name is to put on it a

AUTO_INCREMENT controller, which starting value is automatically initialized to the current

maximum value of the table plus one.

10 http://dev.mysql.com/doc/refman/5.0/en/innodb-foreign-key-constraints.html

http://dev.mysql.com/doc/refman/5.0/en/innodb-foreign-key-constraints.html

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 17 EPFL

3.2.4. Verification of the correctness of the script

After running the script to create all elements, we can use MySQL Workbench to generate11 the

corresponding visual relational schema in the MySQL formalism. The obtained schema is the

following, visually confirming that everything seems right.

11 http://dev.mysql.com/doc/workbench/en/wb-reverse-engineer-live.html

http://dev.mysql.com/doc/workbench/en/wb-reverse-engineer-live.html

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 18 EPFL

4. Data import

The data are initially given in CSV format. To import them, we built some PHP scripts reading these

CSV files, computing intermediate transformations (like exploding a single CSV line into multiple

relations records) and issuing SQL DML commands.

The detailed report for data importation can be found in Appendix A [§9.1].

4.1. Changes made in database schema

Some simple tests were done on small samples of each CSV file before any real import attempt, to

detect most common error cases and build the scripts based on these observation. All these

preliminary tests leaded to some database schema modifications and corrections, detailed below.

The modifications described below as executed during development are already implemented in the

final DDL SQL code given in [§3.2]. To show the DDL SQL code as it was before these changes were

applied, refer to Appendix A [§9.2].

4.1.1. Data types for indexed texts

As created by default, the VARCHAR fields appearing in indexes in order to be “searchable” suffered

from a problem. The lower/upper case was taken in consideration when searching, which is not what

we wanted. The following script was run, adding a particular collation to the concerned fields, in

order to fix this problem.

ALTER TABLE `name` CHANGE COLUMN `firstname`

 `firstname` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NULL;

ALTER TABLE `name` CHANGE COLUMN `lastname`

 `lastname` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

ALTER TABLE `role` CHANGE COLUMN `name`

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

ALTER TABLE `character` CHANGE COLUMN `name`

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

ALTER TABLE `title` CHANGE COLUMN `title`

 `title` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

ALTER TABLE `gender` CHANGE COLUMN `name`

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

ALTER TABLE `company` CHANGE COLUMN `name`

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

ALTER TABLE `country` CHANGE COLUMN `code`

 `code` VARCHAR(2) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

ALTER TABLE `type` CHANGE COLUMN `name`

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

ALTER TABLE `kind` CHANGE COLUMN `name`

 `name` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

4.1.2. Length of country codes

By looking at the very first lines of the COMPANY.CSV file when designing database a few weeks ago,

it seemed that all country codes were 2-characters long, ignoring the brackets. But slightly longer

codes have been found by the automated inspection of this file before the import attempt, thus the

size of this field has been enlarged to 10 by the following script.

ALTER TABLE `country` CHANGE COLUMN `code`

 `code` VARCHAR(10) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL;

4.1.3. Handling of pre-1900 values in YEAR-typed fields

It appeared that some years of productions (both the field year of the production table, and the

fields yearstart and yearend of the serie table) were before 1900, thus cannot be stored by the

specific YEAR MySQL format previously defined for these fields. This format has been changed to

simple INT UNSIGNED by the following script.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 19 EPFL

ALTER TABLE `production` CHANGE COLUMN `year`

 `year` INT UNSIGNED NULL;

ALTER TABLE `serie` CHANGE COLUMN `yearstart`

 `yearstart` INT UNSIGNED NULL;

ALTER TABLE `serie` CHANGE COLUMN `yearend`

 `yearend` INT UNSIGNED NULL;

4.1.4. Changed UNIQUE index in casting

By going through the casting table during inspection before import attempt, it was discovered that

the same person could act as multiple characters in the same production. Thus, the unique key

un_person_prod_role in the casting table was extended to the character_id field by the following

script.

ALTER TABLE `casting` DROP INDEX `un_person_prod_role`;

ALTER TABLE `casting` ADD UNIQUE INDEX `un_person_prod_role_character`

 (`person_id`,`production_id`,`role_id`,`character_id`);

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 20 EPFL

5. Web application

This chapter explains how the web application is built, what are the main queries used to make it

work, and details the functionalities offered to the user.

In Appendix B [§10] can be found all detailed information that is not crucial to the project

comprehension but that is still interesting and useful to understand the work we did to develop the

application.

Major components offered by the ILARIA framework are described in Appendix B [§10.1].

5.1. Search functionality

With a so large database to manage, the search functionality is considered as the core operation of

the whole application. Thus it is designed to be as efficient as possible on a single laptop, reducing

the primary search time over all “searchable areas” to a couple of seconds.

5.1.1. Search queries

In this chapter we present with full details the search queries used.

Productions

The primary search query for finding productions is as follow (here we are searching for “hunger

games”).

SELECT DISTINCT PR.`id`, TI_MAIN.`title`, PR.`year`, GE.`name` AS `gender`

FROM `production` PR

INNER JOIN (

 SELECT TI.`id`, TI.`production_id` AS `prod_id`

 FROM `title` TI

 WHERE TI.`title` COLLATE UTF8_GENERAL_CI LIKE “%hunger games%”

) TI_SEARCH ON PR.`id` = TI_SEARCH.`prod_id`

INNER JOIN `title` TI_MAIN ON PR.`title_id` = TI_MAIN.`id`

LEFT JOIN `gender` GE ON PR.`gender_id` = GE.`id`

GROUP BY PR.`id`

ORDER BY PR.`year` DESC, TI_MAIN.`title` ASC;

By returning the production’s ID in the result, it is then possible to add a link on the graphical result

lines, redirecting to the production’s main page. The search is done on all titles (main and

alternative), but the resulting productions are displayed by their main titles only.

Persons

The primary search query for finding persons is as follow (here we are searching for “jennifer

lawrence”).

SELECT DISTINCT PE.`id`, NA_MAIN.`lastname`, NA_MAIN.`firstname`, PE.`birthdate`,

PE.`deathdate`

FROM `person` PE

INNER JOIN `name` NA_SEARCH ON PE.`id` = NA_SEARCH.`person_id`

INNER JOIN `name` NA_MAIN ON PE.`name_id` = NA_MAIN.`id`

WHERE (

 NA_SEARCH.`lastname` COLLATE UTF8_GENERAL_CI LIKE "%jennifer%"

 OR NA_SEARCH.`lastname` COLLATE UTF8_GENERAL_CI LIKE "%lawrence%"

) AND (

 NA_SEARCH.`firstname` COLLATE UTF8_GENERAL_CI LIKE "%jennifer%"

 OR NA_SEARCH.`firstname` COLLATE UTF8_GENERAL_CI LIKE "%lawrence%"

)

GROUP BY PE.`id`

ORDER BY NA_MAIN.`lastname` ASC, NA_MAIN.`firstname` ASC;

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 21 EPFL

By returning the person’s ID in the result, it is then possible to add a link on the graphical result lines,

redirecting to the person’s main page. The search is done on all names (main and alternative), but

the resulting persons are displayed by their main names only.

In the above example, the original search text was “jennifer lawrence". In the live application, any

input string is broken down by using space as separator, and a customized query is built dynamically,

based on the above sample structure, adding a “OR” clause to each part of the main “AND” clause for

every additional name. When only a single word is specified, the query is simplified to a simple OR

between firstname and lastname on this single word.

Characters

The primary search query for finding characters is as follow (here we are searching for “everdeen").

SELECT DISTINCT CH.`id`, CH.`name`, COUNT(DISTINCT CA.`person_id`) AS `persons_count`,

COUNT(DISTINCT CA.`production_id`) AS `productions_count`

FROM `character` CH

INNER JOIN `casting` CA ON CH.`id`=CA.`character_id`

WHERE CH.`name` COLLATE UTF8_GENERAL_CI LIKE "%everdeen%"

GROUP BY CH.`id`

ORDER BY CH.`id`;

When characters are found, we use their IDs on a button click to open a modal window showing a list

of persons that played that character, retrieved by the following secondary search query. Here the ID

is 2604958 corresponding to Katniss Everdeen.

SELECT DISTINCT PE.`id`, NA.`firstname`, NA.`lastname`

FROM `person` PE

INNER JOIN `name` NA ON PE.`name_id` = NA.`id`

INNER JOIN `casting` CA ON PE.`id` = CA.`person_id`

WHERE CA.`character_id` = 2604958;

In a similar way, we can open a modal window showing a list of productions in which this character

appeared, retrieved by the following secondary search query.

SELECT DISTINCT PR.`id`, TI.`title`, PR.`year`

FROM `production` PR

INNER JOIN `title` TI ON PR.`title_id` = TI.`id`

INNER JOIN `casting` CA ON PR.`id` = CA.`production_id`

WHERE CA.`character_id` = 2604958;

The 2 above queries are returning person’s, respectively production’s ID, allowing us to put buttons

on interface leading to the corresponding person’s or production’s main page.

Companies

The primary search query for finding companies is as follow (here we are searching for “lionsgate”).

SELECT DISTINCT COM.`id` AS `id`, COM.`name` AS `name`, COU.`code` AS `country`,

 COUNT(DISTINCT PC_PROD.`production_id`) AS `produced_count`, COUNT(DISTINCT

 PC_DIST.`production_id`) AS `distributed_count`

FROM `company` COM

LEFT JOIN `country` COU ON COM.`country_id` = COU.`id`

INNER JOIN `productioncompany` PC_PROD ON COM.`id` = PC_PROD.`company_id`

 AND PC_PROD.`type_id` = (

 SELECT `id` FROM `type` WHERE `name`="production companies"

)

INNER JOIN `productioncompany` PC_DIST ON COM.`id` = PC_DIST.`company_id`

 AND PC_DIST.`type_id` = (

 SELECT `id` FROM `type` WHERE `name`="distributors"

)

WHERE COM.`name` COLLATE UTF8_GENERAL_CI LIKE "%lionsgate%"

GROUP BY COM.`id`

ORDER BY COM.`name`;

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 22 EPFL

When companies are found, we use their IDs on a button click to open a modal window showing a

list of movies in which the company is involved as a production company, retrieved by the following

secondary search query. Here the ID is 3293, corresponding to Lionsgate [us].

SELECT DISTINCT PR.`id` AS `id`, TI.`title` AS `title`, PR.`year` AS `year`

FROM `production` PR

INNER JOIN `title` TI ON PR.`title_id` = TI.`id`

INNER JOIN `productioncompany` PC ON PR.`id` = PC.`production_id`

INNER JOIN `type` TY ON PC.`type_id` = TY.`id`

WHERE TY.`name`="production companies"

 AND PC.`company_id`=3293

ORDER BY PR.`year` DESC, TI.`title` ASC;

In the application, the same query is used a second time for a twin button, leading the the list of

movies in which the company is involved as a distributor. The search parameter “production

companies” is simply replaced by “distributors” in the above query.

Genders

The primary search query for finding genders of movies is as follow (here we are searching for

“action”).

SELECT DISTINCT GE.`id` AS `id`, GE.`name` AS `name`, COUNT(DISTINCT PR.`id`) AS

 `count_prod`

FROM `gender` GE

INNER JOIN `production` PR ON GE.`id` = PR.`gender_id`

WHERE GE.`name` COLLATE UTF8_GENERAL_CI LIKE "%action%"

GROUP BY GE.`id`

ORDER BY GE.`name`;

When genders are found, we use their IDs on a button click to open a modal window showing a list of

movies having this gender, retrieved by the following secondary search query. Here the ID is 19,

corresponding to action.

SELECT DISTINCT PR.`id` AS `id`, TI.`title` AS `title`, PR.`year` AS `year`

FROM `production` PR

INNER JOIN `title` TI ON PR.`title_id` = TI.`id`

INNER JOIN `gender` GE ON PR.`gender_id` = GE.`id`

WHERE GE.`id`=19

ORDER BY PR.`year` DESC, TI.`title` ASC;

5.1.2. Graphical interface

The search form is composed of 2 parts.

 A “simple query” can be done, searching simultaneously through all the primary search

queries presented above.

 An “advanced query” can be done, specifying which primary search queries must be

launched.

This 2 parts are presented to the user in a collapsible accordion for better visual comprehension of

the search possibilities.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 23 EPFL

The 2 search forms expanded for the purpose of this report

When a simple search is done, a screen like the following is displayed.

A result screen sample for “everdeen"

Each of the 5 result sections is an AJAX-loaded data array, linked to the corresponding primary search

query.

In the case of an advanced search, only sections that are checked on the advanced form will be

displayed on the result page and thus loaded by AJAX queries.

In the characters, companies and genres result arrays, grey buttons with counts (for actors and

movies, in the case of characters as shown on above picture) are calling secondary search queries

and loading the result in the modal window.

In the persons, productions and companies result arrays, blue buttons with arrows are redirecting to

the main pages for these elements.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 24 EPFL

5.2. Main pages

The application offers main pages for viewing the details of productions, persons and companies.

Other entities don’t have dedicated main pages because the search functionality’s various modal

windows are sufficient to accessing all their details efficiently and conveniently.

5.2.1. Person’s main page

The following picture presents the main page of a person.

Jennifer Lawrence’s main page, truncated vertically

The above picture is truncated for practical reasons. The “Played in movies” is 20 elements long, with

pagination visible in the upper right corner. A similar list, with the explicit title “Played in series” is

present just below it, thus clearly separating these 2 kinds of elements. Episodes are implicitly

included in the series, with modal windows to accessing corresponding lists.

The “Played in movies”, “Played in series” and “Alternative names” lists are AJAX-loaded, thus

speeding up the main page loading and apparition of the main elements (name, birthdate, etc…).

Queries used to load this page’s data are given in Appendix B [§10.2.1].

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 25 EPFL

5.2.2. Production’s main page

The following picture presents the main page of a production.

The Hunger Game’s main page

The “Casting”, “Companies involved” and “Alternative titles” data arrays are AJAX-loaded.

The above main page presents the graphical configuration of a singleproduction kind of production.

In the case of an episode, the corresponding serie’s name, season and episode numbers would

appear in the upper right general infos tab. In the case of a serie, a fourth AJAX-loaded list is added,

with the list of seasons and buttons to load using AJAX the lists of episodes in a season in the modal

window.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 26 EPFL

Queries used to load this page’s data are given in Appendix B [§10.2.2].

5.2.3. Company’s main page

The following picture presents the main page of a company.

Lionsgate main page, vertically truncated

The above picture is truncated for practical reasons. The “Acted in movies” is 20 elements long, with

pagination visible in the upper right corner. A similar list, with the explicit title “Acted in series” is

present just below it, thus clearly separating these 2 kinds of elements. Episodes are implicitly

included in the series, with modal windows to accessing corresponding lists.

The “Acted in movies” and “Acted in series” data arrays are AJAX-loaded.

Queries used to load this page’s data are given in Appendix B [§].

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 27 EPFL

5.3. Inserting, updating and deleting entities

In this chapter, we present the data management functionalities offered by the application. Full SQL

queries are not given, mainly to save place on this document, but also because they are highly

repeating and simple. Instead, we describe the procedures followed by application to insert complex

things, including coherence verifications and error management.

Before any insertion is possible, we have to take a look to primary keys fields of the whole database.

In chapter [§3.2.3] we discussed about the necessity of some primary keys to not be auto

incremented during import phase, due to the fact that keys were already present in the CSV files.

Here is given the status of each primary key field in the database.

Table.field Status

casting.id Already has AUTO_INCREMENT

character.id Need to be defined as AUTO_INCREMENT

company.id Need to be defined as AUTO_INCREMENT

country.id Already has AUTO_INCREMENT

episode.id Do not need AUTO_INCREMENT, references production.id (ISA)

gender.id Already has AUTO_INCREMENT

kind.id Already has AUTO_INCREMENT

name.id Already has AUTO_INCREMENT

person.id Need to be defined as AUTO_INCREMENT

production.id Need to be defined as AUTO_INCREMENT

productioncompany.id Need to be defined as AUTO_INCREMENT

role.id Already has AUTO_INCREMENT

season.id Already has AUTO_INCREMENT

serie.id Do not need AUTO_INCREMENT, references production.id (ISA)

singleproduction.id Do not need AUTO_INCREMENT, references production.id (ISA)

title.id Already has AUTO_INCREMENT

type.id Already has AUTO_INCREMENT

The following script was used to apply changes on the database.

SET FOREIGN_KEY_CHECKS=0;

ALTER TABLE `character` CHANGE COLUMN `id` `id` INT UNSIGNED AUTO_INCREMENT;

ALTER TABLE `company` CHANGE COLUMN `id` `id` INT UNSIGNED AUTO_INCREMENT;

ALTER TABLE `person` CHANGE COLUMN `id` `id` INT UNSIGNED AUTO_INCREMENT;

ALTER TABLE `production` CHANGE COLUMN `id` `id` INT UNSIGNED AUTO_INCREMENT;

ALTER TABLE `productioncompany` CHANGE COLUMN `id` `id` INT UNSIGNED AUTO_INCREMENT;

SET FOREIGN_KEY_CHECKS=1;

The above script has to be run only as is when all data have been imported from the CSV files. Having

these changes made on the original database before importing CSV files can lead to error, bad ID

references and broken foreign keys.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 28 EPFL

5.3.1. Persons

The persons have a statistics page, from which it is possible to insert a new person.

Statistics page for the persons, with the insert button

When inserting a person, a form is presented to the user to fill in the data.

Form for filling in a person’s details

The update button is located in the upper right corner of the person’s main page. The form used for

this update is exactly the same as the one used for the insertion. Fields are automatically populated

by the ILARIA framework, using basic SELECT queries.

The delete button is located in the upper right corner of the person’s main page. It shows a modal

window asking for the user to confirm what he wants to do.

Modal window asking for confirmation when trying to delete a person

The insertion, update and deletion procedures can be found in Appendix B [§10.3.1].

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 29 EPFL

5.3.2. Alternative names

When located on a person’s main page, it is possible to manage the alternative names of this person.

The alternative names list on the Jennifer Lawrence’s main page

When inserting an alternative name, a form is presented to the user to fill in data.

Form for filling in an alternative name

The form used for this update is exactly the same as the one used for the insertion. Fields are

automatically populated by the ILARIA framework, using basic SELECT queries.

A modal window is used to ask for user confirmation.

Modal window asking for confirmation when trying to delete an alternative name

The insertion, update and deletion procedures can be found in Appendix B [§10.3.2].

5.3.3. Productions

The productions have a statistics page, from which it is possible to insert a new singleproduction or

serie.

Statistics page for the production, with the insert buttons for singleproductions (movies) and series

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 30 EPFL

When inserting a movie (singleproduction), the following form is presented to the user to fill in data.

Form for filling in the basic details of a singleproduction

When inserting a serie, the following form is presented to the user to fill in data.

Form for filling in the basic details of a serie

The insertion button for an episode is located in the upper right corner of the serie main page. Thus,

this inserts an episode in a pre-chosen serie. The following form is presented to the user to fill in

data.

Form for filling in the basic details of an episode

The update button is located in the upper right corner of the production’s main page. The form used

for this update is exactly the same as the one used for the insertion of the corresponding kind of

production (movie, serie or episode). Fields are automatically populated by the ILARIA framework,

using basic SELECT queries.

The delete button is located in the upper right corner of the production’s main page. It shows a

modal window asking for the user to confirm what he wants to do.

Modal window asking for confirmation when trying to delete a singleproduction

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 31 EPFL

Modal window asking for confirmation when trying to delete a serie

The insertion, update and deletion procedures can be found in Appendix B [§10.3.3].

5.3.4. Alternative titles

When located on a production’s main page, it is possible to manage the alternative titles of this

production.

The alternative titles list on the Hunger Games Mockingjay main page

When inserting an alternative title, a form is presented to the user to fill in data.

Form for filling in an alternative title

The form used for this update is exactly the same as the one used for the insertion. Fields are

automatically populated by the ILARIA framework, using basic SELECT queries.

A modal window is used to ask for user confirmation.

Modal window asking for confirmation when trying to delete an alternative title

The insertion, update and deletion procedures can be found in Appendix B [§10.3.4].

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 32 EPFL

5.3.5. Casting

When located on a production’s main page, it is possible to manage the casting of this production.

A part of the casting array on the Hunger Games Mockingjay main page

When inserting a casting record, a form is presented to the user to fill in data.

Form for filling in a casting record

The field “Person” is special. The upper read-only box indicates the currently selected person (here

Jennifer Lawrence). The “search through persons…” box and its “Search” button are used to search

another person for this role, and triggers a modal windows to present results.

Modal window showing persons corresponding to “jennifer lawrence"

When clicking on a button in this modal window, the corresponding person is loaded in the form

and the modal window is closed. This globally works like an intelligent drop-down menu.

The form used for this update is exactly the same as the one used for the insertion. Fields are

automatically populated by the ILARIA framework, using basic SELECT queries.

A modal window is used to ask for user confirmation.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 33 EPFL

Modal window asking for confirmation when trying to delete a casting record

The insertion, update and deletion procedures can be found in Appendix B [§10.3.5].

5.3.6. Companies involved in a production

When located on a production’s main page, it is possible to manage the companies involved in this

production.

A part of the companies array on the Hunger Games Mockingjay main page

When inserting a productioncompany record, a form is presented to the user to fill in data.

Form for filling in a productioncompany record

The field “Company” is special. The upper read-only box indicates the currently selected company

(here Lionsgate located in the United States). The “search through companies…” box and its “Search”

button are used to search another company, and triggers a modal windows to present results.

Modal window showing companies corresponding to “lionsgate"

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 34 EPFL

When clicking on a button in this modal window, the corresponding company is loaded in the

form and the modal window is closed. This globally works like an intelligent drop-down menu.

The form used for this update is exactly the same as the one used for the insertion. Fields are

automatically populated by the ILARIA framework, using basic SELECT queries.

A modal window is used to ask for user confirmation.

Modal window asking for confirmation when trying to delete a productioncompany record

The insertion, update and deletion procedures can be found in Appendix B [§10.3.6].

5.3.7. Companies

The companies have a statistics page, from which it is possible to insert a new company.

Statistics page for the companies, with the insert button

When inserting a company, a form is presented to the user to fill in the data.

Form for filling in a company’s details

The update button is located in the upper right corner of the company’s main page. The form used

for this update is exactly the same as the one used for the insertion. Fields are automatically

populated by the ILARIA framework, using basic SELECT queries.

The delete button is located in the upper right corner of the company’s main page. It shows a modal

window asking for the user to confirm what he wants to do.

Modal window asking for confirmation when trying to delete a company

The insertion, update and deletion procedure can be found in Appendix B [§10.3.7].

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 35 EPFL

5.3.8. Miscellaneous

A specific page is dedicated to the management of miscellaneous entities : roles, genres, types and

kinds.

Management page for miscellaneous entities

As the corresponding forms are very simple (always one single field to fill in), the details are not

shown here. It is basically forbidden by the database itself (“ON DELETE RESTRICT” constraints) to

delete one of these miscellaneous entities record when it is used by other records. Application will

show a modal deny message when trying to do so.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 36 EPFL

6. Simple queries (milestone 2)

In this chapter, we present the SQL queries developed for the second milestone (called “simple

querie”).

6.1. SQL code

Here are the SQL codes for the simple queries.

6.1.1. Query (a)

Original assignment was as follows.

“Compute the number of movies per year. Make sure to include tv and video movies”

Here is the corresponding SQL query we developed.

SELECT P.`year`, COUNT(P.`id`)

FROM `production` P

INNER JOIN `singleproduction` S ON P.`id` = S.`id`

WHERE S.`kind_id` IN (

 SELECT K.`id`

 FROM `kind` K

 WHERE K.`name` IN ("tv movie","video movie","movie")

)

GROUP BY P.`year`;

6.1.2. Query (b)

Original assignment was as follows.

“Compute the ten countries with most production companies”

Here is the corresponding SQL query we developed.

SELECT COU.`id`, COU.`code`, SUB.`number`

FROM (

 SELECT COM.`country_id`, COUNT(DISTINCT COM.`id`) AS `number`

 FROM `company` COM

 INNER JOIN (

 SELECT PC.`company_id`

 FROM `productioncompany` PC

 INNER JOIN `type` TY ON PC.`type_id` = TY.`id`

 WHERE TY.`name` = "production companies"

) PC ON PC.`company_id` = COM.`id`

 GROUP BY COM.`country_id`

 HAVING COM.`country_id` IS NOT NULL

 ORDER BY `number` DESC

 LIMIT 10

) SUB

INNER JOIN `country` COU ON SUB.`country_id` = COU.`id`;

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 37 EPFL

6.1.3. Query (c)

Original assignment was as follows.

“Compute the min, max and average career duration”

We developed an all-in-one SQL query that used to work but was too slow (about 6-8 minutes on a

modern laptop).

SELECT MIN(T.`careerDuration`) AS `min`, MAX(T.`careerDuration`) AS `max`,

 AVG(T.`careerDuration`) AS `avg`

FROM (

 SELECT (MAX(P.`year`) - MIN(P.`year`)) AS `careerDuration`

 FROM (

 SELECT DISTINCT C.`person_id`, C.`production_id`

 FROM `casting` C

) C

 INNER JOIN (

 SELECT P.`id`, P.`year`

 FROM `production` P

 WHERE P.`year` IS NOT NULL

) P ON C.`production_id` = P.`id`

 GROUP BY C.`person_id`

) T;

To improve performances, we chosed to design and exploit a materialized view. The following code is
used to create the table.

CREATE TABLE m2c_careerduration (

 person_id INT UNSIGNED,

 careerDuration INT UNSIGNED,

 PRIMARY KEY (`person_id`)

);

The following code is used to create the procedure that update this table.

DELIMITER $$

CREATE PROCEDURE refresh_m2c_careerduration ()

BEGIN

 TRUNCATE TABLE m2c_careerduration;

 INSERT INTO m2c_careerduration (`person_id`, `careerDuration`)

 SELECT C.`person_id`, (MAX(P.`year`) - MIN(P.`year`)) AS `careerDuration`

 FROM (

 SELECT DISTINCT C.`person_id`, C.`production_id`

 FROM `casting` C

) C

 INNER JOIN (

 SELECT P.`id`, P.`year`

 FROM `production` P

 WHERE P.`year` IS NOT NULL

) P ON C.`production_id` = P.`id`

 GROUP BY C.`person_id`;

END;

$$

DELIMITER ;

Then, the following call has to be made every time we want the materialized view to be updated.

CALL refresh_m2c_careerduration;

Finally, here is the SQL query that has to be launched, and run in very little time (couple of seconds),
when we want to obtain data.

SELECT MIN(T.`careerDuration`) AS `min`, MAX(T.`careerDuration`) AS `max`,

 AVG(T.`careerDuration`) AS `avg`

FROM m2c_careerduration T;

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 38 EPFL

6.1.4. Query (d)

Original assignment was as follow.

“Compute the min, max and average number of actors in a production”

We developed an all-in-one SQL query that used to work but was too slow (about 2-3 minutes on a

modern laptop).

SELECT MIN(T.`number`) AS `min`, MAX(T.`number`) AS `max`, AVG(T.`number`) AS `avg`

FROM (

 SELECT COUNT(C.`id`) AS `number`

 FROM `casting` C

 INNER JOIN `role` R ON C.`role_id` = R.`id`

 WHERE R.`name` = "actor"

 GROUP BY C.`production_id`

) T;

To improve performances, we chosed to design and exploit a materialized view. The following code is
used to create the table.

CREATE TABLE m2d_nbactorproduction (

 production_id INT UNSIGNED,

 nb_actor INT UNSIGNED,

 PRIMARY KEY (`production_id`)

);

The following code is used to create the procedure that update this table.
DELIMITER $$

CREATE PROCEDURE refresh_m2d_nbactorproduction ()

BEGIN

 TRUNCATE TABLE m2d_nbactorproduction;

 INSERT INTO m2d_nbactorproduction (`production_id`, `nb_actor`)

 SELECT C.`production_id`, COUNT(C.`id`) AS `number`

 FROM `casting` C

 INNER JOIN `role` R ON C.`role_id` = R.`id`

 WHERE R.`name` = "actor"

 GROUP BY C.`production_id`;

END;

$$

DELIMITER ;

Then, the following call has to be made every time we want the materialized view to be updated.

CALL refresh_m2d_ nbactorproduction;

Finally, here is the SQL query that has to be launched, and run in very little time (couple of seconds),
when we want to obtain data.

SELECT MIN(T.`nb_actor`) AS `min`, MAX(T.`nb_actor`) AS `max`, AVG(T.`nb_actor`) AS `avg`

FROM m2d_nbactorproduction T;

6.1.5. Query (e)

Original assignment was as follow.

“Compute the min,max and average height of female persons”

Here is the corresponding SQL query we developed.

SELECT MIN(P.`height`) AS `min`, MAX(P.`height`) AS `max`, AVG(P.`height`) AS `avg`

FROM `person` P

WHERE P.`height` IS NOT NULL

 AND P.`gender` = "f";

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 39 EPFL

6.1.6. Query (f)

Original assignment was as follow.

“List all pairs of persons and movies where the person has both directed the movie and acted in the

movie. Do not include tv and video movies.”

Here is the corresponding SQL query we developed.

SELECT DISTINCT C.person_id, C.production_id

FROM `casting` C

WHERE EXISTS

(

 SELECT CC.id

 FROM `casting` CC

 INNER JOIN `role` R

 ON CC.role_id = R.id

 WHERE CC.person_id = C.person_id

 AND CC.production_id = C.production_id

 AND R.name = "director"

 AND EXISTS

 (

 SELECT CC.id

 FROM `casting` CC

 INNER JOIN `role` R

 ON CC.role_id = R.id

 INNER JOIN `singleproduction` S

 ON CC.production_id = S.id

 INNER JOIN `kind` K ON S.`kind_id` = K.`id`

 WHERE K.`name` = "movie"

 AND CC.person_id = C.person_id

 AND CC.production_id = C.production_id

 AND R.name = "actor"

)

);

6.1.7. Query (g)

Original assignment was as follow.

“List the three most popular character names”

Here is the corresponding SQL query we developed.

SELECT CH.`name`

FROM (

 SELECT CA.`character_id`, COUNT(CA.`id`) AS `number`

 FROM `casting` CA

 WHERE CA.`character_id` IS NOT NULL

 GROUP BY CA.`character_id`

 ORDER BY `number` DESC

 LIMIT 0,3

) T

INNER JOIN `character` CH ON T.`character_id` = CH.`id`;

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 40 EPFL

6.2. Application dedicated page

The web application offers a complete page dedicated to the execution and the results visualization

of these 7 simple queries.

6.2.1. Launch page

The launch page gives the original assignment linked to each query, and a button to launch it.

Launch page for the simple queries of milestone 2

6.2.2. Queries results

The queries execution is asynchronous, using AJAX call to fill data arrays similar to those used in

other parts of application (see [§10.1.1]).

The execution of query A leads to a result array with the following appearance.

Results array for the simple query A

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 41 EPFL

The execution of query B leads to a result array with the following appearance.

Results array for the simple query B

The execution of query C leads to a result array with the following appearance.

Results array for the simple query C

The execution of query D leads to a result array with the following appearance.

Results array for the simple query D

The execution of query E leads to a result array with the following appearance.

Results array for the simple query E

The execution of query F leads to a result array with the following appearance.

Results array for the simple query F

The execution of query G leads to a result array with the following appearance.

Results array for the simple query G

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 42 EPFL

7. Interesting queries (milestone 3)

In this chapter, we present the SQL queries developed for the third milestone (called “interesting

queries”).

7.1. SQL code

Here are the SQL codes for the interesting queries.

7.1.1. Query (a)

Original assignment was as follows.

“Find the actors and actresses (and report the productions) who played in a production where they

were 55 or more year older than the youngest actor/actress playing.”

Here is the corresponding SQL query we developed.

SELECT DISTINCT C.`person_id`, C.`production_id`

FROM `casting` C

INNER JOIN (

 SELECT P.`id`, P.`birthdate`

 FROM `person` P

 WHERE P.`birthdate` IS NOT NULL

) P ON C.`person_id` = P.`id`

INNER JOIN `role` R ON C.`role_id` = R.`id`

WHERE R.`name` IN ("actor", "actress")

AND EXISTS (

 SELECT MIN(PP.`birthdate`) AS `min_birthdate`

 FROM `casting` CC

 INNER JOIN (

 SELECT PP.`id`, PP.`birthdate`

 FROM `person` PP

 WHERE PP.`birthdate` IS NOT NULL

) PP ON CC.`person_id` = PP.`id`

 INNER JOIN `role` R ON CC.`role_id` = R.`id`

 WHERE CC.`production_id` = C.`production_id`

 AND R.`name` IN ("actor", "actress")

 HAVING TIMESTAMPDIFF(YEAR, `min_birthdate`, P.`birthdate`) >= 55

);

7.1.2. Query (b)

Original assignment was as follows.

“Given an actor, compute his most productive year.”

Here is the corresponding SQL query we developed.

SELECT P.year, COUNT(*) AS number

FROM (

 SELECT C.`production_id`

 FROM `casting` C

 WHERE C.`person_id` = ###

) T

INNER JOIN `production` P ON T.`production_id` = P.`id`

WHERE P.`year` IS NOT NULL

GROUP BY P.`year`

ORDER BY number DESC

LIMIT 0,1;

7.1.3. Query (c)

Original assignment was as follows.

“Given a year, list the company with the highest number of productions in each genre.”

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 43 EPFL

Here is the corresponding SQL query we developed.

SELECT T.`gender_id`, T.`company_id`, T.`number`

FROM (

 SELECT PP.`gender_id`, P.`company_id`, COUNT(P.`company_id`) AS `number`

 FROM `productioncompany` P

 INNER JOIN `production` PP ON PP.`id` = P.`production_id`

 INNER JOIN `type` T ON P.`type_id` = T.`id`

 WHERE T.`name` = "production companies"

 AND PP.`year` = ###

 AND PP.`gender_id` IS NOT NULL

 GROUP BY PP.`gender_id`, P.`company_id`

 ORDER BY PP.`gender_id` ASC, `number` DESC, P.`company_id`

) T

GROUP BY T.`gender_id`;

7.1.4. Query (d)

Original assignment was as follows.

“Compute who worked with spouses/children/potential relatives on the same production. You can

assume that the same real surname (last name) implies a relation.”

Here is the corresponding SQL query we developed.

SELECT DISTINCT C.person_id, C.production_id

FROM `casting` C

INNER JOIN `person` P ON C.person_id = P.id

INNER JOIN `name` N ON P.name_id = N.id

WHERE EXISTS (

 SELECT CC.id

 FROM `casting` CC

 INNER JOIN `person` PP ON CC.person_id = PP.id

 INNER JOIN `name` NN ON PP.name_id = NN.id

 WHERE CC.production_id = C.production_id

 AND CC.person_id <> C.person_id

 AND N.lastname = NN.lastname

);

7.1.5. Query (e)

Original assignment was as follows.

“Compute the average number of actors per production per year.”

Here is the corresponding SQL query we developed.

SELECT P.`year`, AVG(T.`number`) AS `number`

FROM (

 SELECT C.`production_id`, COUNT(DISTINCT C.`person_id`) AS number

 FROM `casting` C

 INNER JOIN `role` R ON C.`role_id` = R.`id`

 WHERE R.`name` = "actor"

 GROUP BY C.`production_id`

) T

INNER JOIN `production` P ON P.`id` = T.`production_id`

WHERE P.`year` IS NOT NULL

GROUP BY P.`year`;

7.1.6. Query (f)

Original assignment was as follows.

“Compute the average number of episodes per season.”

Here is the corresponding SQL query we developed.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 44 EPFL

SELECT AVG(T.`number`) AS `number`

FROM (

 SELECT E.`season_id`, COUNT(E.`id`) AS `number`

 FROM `episode` E

 GROUP BY E.`season_id`

) T;

7.1.7. Query (g)

Original assignment was as follows.

“Compute the average number of seasons per serie.”

Here is the corresponding SQL query we developed.

SELECT AVG(T.`number`) AS `number`

FROM (

 SELECT S.`serie_id`, COUNT(S.`id`) AS `number`

 FROM `season` S

 GROUP BY S.`serie_id`

) T;

7.1.8. Query (h)

Original assignment was as follows.

“Compute the top ten tv-series (by number of seasons).”

Here is the corresponding SQL query we developed.

SELECT S.`id`, T.`number`

FROM (

 SELECT S.`serie_id`, COUNT(S.`id`) AS `number`

 FROM `season` S

 GROUP BY S.`serie_id`

 ORDER BY `number` DESC

 LIMIT 0,10

) T

INNER JOIN `serie` S ON S.`id` = T.`serie_id`;

7.1.9. Query (i)

Original assignment was as follows.

“Compute the top ten tv-series (by number of episodes per season).”

Here is the corresponding SQL query we developed.

SELECT S.`serie_id`, AVG(T.`number`) AS `number`

FROM (

 SELECT E.`season_id`, COUNT(E.`id`) AS `number`

 FROM `episode` E

 GROUP BY E.`season_id`

) T

INNER JOIN `season` S ON T.`season_id` = S.`id`

GROUP BY S.`serie_id`

ORDER BY `number` DESC

LIMIT 0,10;

7.1.10. Query (j)

Original assignment was as follows.

“Find actors, actresses and directors who have movies (including tv movies and video movies)

released after their death.”

Here is the corresponding SQL query we developed.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 45 EPFL

SELECT DISTINCT Per.`id`

FROM `casting` C

INNER JOIN `role` R ON C.`role_id` = R.`id`

INNER JOIN `production` P ON C.`production_id` = P.`id`

INNER JOIN `singleproduction` S ON P.`id` = S.`id`

INNER JOIN `kind` K ON S.`kind_id` = K.`id`

INNER JOIN `person` Per ON C.`person_id` = Per.`id`

WHERE R.`name` IN ("actor", "actress", "director")

AND K.`name` IN ("movie", "tv movie", "video movie")

AND Per.`deathdate` IS NOT NULL

AND P.`year` > EXTRACT(YEAR FROM Per.`deathdate`);

7.1.11. Query (k)

Original assignment was as follows.

“For each year, show three companies that released the most movies.”

After giving a try to standard SQL queries, we determined that only a materialized view would permit

running times not exceeding tens of seconds for the main query. The following code is used to create

the table.

CREATE TABLE m3k_moviesbycompanyperyear (

 year INT UNSIGNED,

 company_id INT UNSIGNED,

 nb_movie INT UNSIGNED,

 PRIMARY KEY (`year`, `company_id`)

);

The following code is used to create the procedure that update this table.

DELIMITER $$

CREATE PROCEDURE refresh_m3k_moviesbycompanyperyear ()

BEGIN

 TRUNCATE TABLE m3k_moviesbycompanyperyear;

 INSERT INTO m3k_moviesbycompanyperyear (`year`, `company_id`, `nb_movie`)

 SELECT P.`year`, PC.`company_id`, COUNT(P.`id`) AS `number`

 FROM `casting` C

 INNER JOIN `production` P ON C.`production_id` = P.`id`

 INNER JOIN `productioncompany` PC ON P.`id` = PC.`production_id`

 INNER JOIN `type` T ON PC.`type_id` = T.`id`

 WHERE T.`name` = "production companies"

 AND P.`year` IS NOT NULL

 GROUP BY P.`year`, PC.`company_id`

 ORDER BY P.`year`, `number` DESC;

END;

$$

DELIMITER ;

Then, the following call has to be made every time we want the materialized view to be updated.

CALL refresh_m3k_moviesbycompanyperyear;

Finally, here is the SQL query that has to be launched, and run in very little time (couple of seconds),

when we want to obtain data.

SELECT T.`year`, T.`company_id`, T.`nb_movie`

FROM (

 SELECT T.`year`, T.`company_id`, T.`nb_movie`,

 @year_rank := IF(@current_year = T.`year`, @year_rank + 1, 1) AS `year_rank`,

 @current_year := T.`year`

 FROM m3k_moviesbycompanyperyear T

) T

WHERE year_rank <= 3;

7.1.12. Query (l)

Original assignment was as follows.

“List all living people who are opera singers ordered from youngest to oldest.”

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 46 EPFL

Here is the corresponding SQL query we developed.

SELECT P.`id`

FROM `person` P

WHERE P.`birthdate` IS NOT NULL

AND P.`deathdate` IS NULL

AND (

 P.`trivia` LIKE "%opera singer%"

 OR P.`minibiography` LIKE "%opera singer%"

)

ORDER BY P.`birthdate` DESC;

7.1.13. Query (m)

Original assignment was as follows.

“List 10 most ambiguous credits (pairs of people and productions) ordered by the degree of

ambiguity. A credit is ambiguous if either a person has multiple alternative names or a production has

multiple alternative titles. The degree of ambiguity is a product of the number of possible names (real

name + all alternatives) and the number of possible titles (real + alternatives).”

Here is the corresponding SQL query we developed.

SELECT DISTINCT C.person_id, C.production_id, N.`number`*T.`number` AS `number`

FROM `casting` C

INNER JOIN (

 SELECT N.person_id, COUNT(N.id) AS `number`

 FROM `name` N

 GROUP BY N.person_id

 HAVING `number` > 1

) N ON C.person_id = N.person_id

INNER JOIN (

 SELECT T.production_id, COUNT(T.id) AS `number`

 FROM `title` T

 GROUP BY T.production_id

 HAVING `number` > 1

) T ON C.production_id = T.production_id

ORDER BY number DESC

LIMIT 0,10;

7.1.14. Query (n)

Original assignment was as follows.

“For each country, list the most frequent character name that appears in the productions of a

production company (not a distributor) from that country.”

After giving a try to standard SQL queries, we determined that only a materialized view would permit

running times not exceeding tens of seconds for the main query. The following code is used to create

the table.

CREATE TABLE m3n_mostcharactercountry (

 country_id INT UNSIGNED,

 character_id INT UNSIGNED,

 number INT UNSIGNED,

 PRIMARY KEY (`country_id`, `character_id`)

);

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 47 EPFL

The following code is used to create the procedure that update this table.

DELIMITER $$

CREATE PROCEDURE refresh_m3n_mostcharactercountry ()

BEGIN

 TRUNCATE TABLE m3n_mostcharactercountry;

 INSERT INTO m3n_mostcharactercountry (`country_id`, `character_id`, `number`)

 SELECT Comp.`country_id`, C.`character_id`, COUNT(C.`character_id`) AS `number`

 FROM `casting` C

 INNER JOIN `productioncompany` PC ON C.`production_id` = PC.`production_id`

 INNER JOIN `type` T ON PC.`type_id` = T.`id`

 INNER JOIN `company` Comp ON PC.`company_id` = Comp.`id`

 WHERE T.`name` = "production companies"

 AND Comp.`country_id` IS NOT NULL

 AND C.`character_id` IS NOT NULL

 GROUP BY Comp.`country_id`, C.`character_id`

 ORDER BY Comp.`country_id`, `number` DESC, C.`character_id` ASC;

END;

$$

DELIMITER ;

Then, the following call has to be made every time we want the materialized view to be updated.

CALL refresh_m3n_mostcharactercountry;

Finally, here is the SQL query that has to be launched, and run in very little time (couple of seconds),

when we want to obtain data.

SELECT T.`country_id`, T.`character_id`

FROM m3n_mostcharactercountry T

GROUP BY T.`country_id`;

7.2. Application dedicated page

The web application offers a complete page dedicated to the execution and the results visualization

of these 14 interesting queries.

7.2.1. Launch page

The launch page gives the original assignment linked to each query, and a button to launch it. It looks

very similar to the one used for the simple queries (see [§6.2.1]).

In the particular case of queries B and C, which require input parameters, text field on the web page

are allowing the user to chose the value he wants for parameters.

Part of the launch page for queries of milestone 3, showing the input fields for parameterized queries

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 48 EPFL

7.2.2. Queries results

The queries execution is asynchronous, using AJAX call to fill data arrays similar to those used in

other parts of application (see [§10.1.1]).

The execution of query A leads to a result array with the following appearance.

Results array for the interesting query A

The execution of query B leads to a result array with the following appearance.

Results array for the interesting query B

The execution of query C leads to a result array with the following appearance.

Results array for the interesting query C

The execution of query D leads to a result array with the following appearance.

Results array for the interesting query D

The execution of query E leads to a result array with the following appearance.

Results array for the interesting query E

The execution of query F leads to a result array with the following appearance.

Results array for the interesting query F

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 49 EPFL

The execution of query G leads to a result array with the following appearance.

Results array for the interesting query G

The execution of query H leads to a result array with the following appearance.

Results array for the interesting query H

The execution of query I leads to a result array with the following appearance.

Results array for the interesting query I

The execution of query J leads to a result array with the following appearance.

Results array for the interesting query J

The execution of query K leads to a result array with the following appearance.

Results array for the interesting query K

The execution of query L leads to a result array with the following appearance.

Results array for the interesting query L

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 50 EPFL

The execution of query M leads to a result array with the following appearance.

Results array for the interesting query M

The execution of query N leads to a result array with the following appearance.

Results array for the interesting query N

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 51 EPFL

8. Detailed queries analysis

In this chapter we present our analysis for some queries selected in chapter 7 (milestone 3). The 3

queries we chosed to analyse are E, J and M.

8.1. Necessity of indexes

We are going to explain the necessity of indexes by analyzing queries E, J and M of the milestone 3

and comparing the gain obtained using indexes.

Unfortunately MySQL doesn’t propose a tool like Oracle to show the exact execution plan where we

can see exactly which kind of join is used and others interesting details. However, we have used the

command EXPLAIN EXTENDED and the visualization tool of MySQLWorkbench. More informations

about those outputs can be found on https://dev.mysql.com/doc/refman/5.5/en/explain-

output.html#explain-join-types and https://dev.mysql.com/doc/refman/5.5/en/explain-

extended.html.

The running time obtained for those 3 queries were measured using a MacBook Pro mid-2010.

8.1.1. Query(e)

First, we recall the Query(e) :

SELECT P.`year`, AVG(T.`number`) AS `number`

FROM (

 SELECT C.`production_id`, COUNT(DISTINCT C.`person_id`) AS number

 FROM `casting` C

 INNER JOIN `role` R ON C.`role_id` = R.`id`

 WHERE R.`name` = "actor"

 GROUP BY C.`production_id`

) T

INNER JOIN `production` P ON P.`id` = T.`production_id`

WHERE P.`year` IS NOT NULL

GROUP BY P.`year`;

We can see that we have a temporary table (which is called a derived in MySQL) containing a join

between the tables casting and role. Once the temporary table is created, we join it with the table

production.

Without any indexes

Let’s have a check of the execution plan without any indexes except the primary keys.

Execution plan seen as a table for the query E of milestone 3, without indexes

https://dev.mysql.com/doc/refman/5.5/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/5.5/en/explain-output.html#explain-join-types
https://dev.mysql.com/doc/refman/5.5/en/explain-extended.html
https://dev.mysql.com/doc/refman/5.5/en/explain-extended.html

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 52 EPFL

Execution plan seen as a schema for the query E of milestone 3, without indexes

For the table role, we have to do a look-up to find the id corresponding to an actor. We can create an

index on the filed role.name to reduce the time to know which id is an actor. However the gain won’t

be so much comparing to the other indexes.

For the table casting, we have to do a full-scan because the rows aren’t clustered by role_id. The join

operation will be high due to the lack of index on this field because we have to check every row (~45

millions) to proceed the join.

We can see that for the table production, we have to do a full-scan because we don’t have any

information about the location of the production which have a year. Moreover, the group by year is

costly because we have to create a temporary table to sort the production by year.

With those observation, we can create indexes to solve those problems. Without any indexes, we

obtains a time of 212 seconds. For the rest, using the primary key helps, because otherwise the time

would be incredibly high !

With indexes

We have create the following indexes on :

- casting.role_id to improve the join operation

- role.name to improve the look-up to see which id corresponds to an actor

- production.year to improve the group by part

With those indexes, we obtain the following execution plan :

Execution plan seen as a table for the query E of milestone 3, with proper indexes set

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 53 EPFL

Execution plan seen as a schema for the query E of milestone 3, with proper indexes set

Let’s first talk about the index production.year. Before, we had a full-scan, filesort and temporary

table (for the group by). Now, we have a range-scan (which is more efficient) and don’t need to use a

filesort with a temporary table for the groupby because the field year is indexed. Using the primary

key wouldn’t have been a good idea because we still need a full scan to obtain the production which

has a year !

For the temporary table (derived2), it doesn’t change anything because we didn’t have indexes

before (because this table doesn’t exists) and it doesn’t worthwhile to create a table with indexes

during the query processing.

If we compare the row for role, we can observe we passed from eq_ref (which means that we use an

equality operator to find the corresponding row, which was a good join) to const (because of the

index on role.name) which is much better because there is only one row, it can be considered as

constant by the optimized and so reducing the access time to read this value.

Finally, for the table casting, the index casting.role_id helps a lot for the join operation, passing from

a full-scan to a ref, which is used for the operator “=” or “< = >”, which is much better than a full-

scan. Remember that casting has 45 millions of rows so we gain a lot in performances.

Another interesting detail is the number of rows checked ! You can see the differences between the

case without and with the indexes. For production table, we seek 2 times less rows and 2 times less

rows for casting, which correspond to ~25 millions of rows in total !

With all those indexes, we have reached a time of 102 seconds, wich is a speed up of 2.08 from the

initial time. We might ask ourself if it is better to use an index on casting.production_id rather than

casting.role_id, improving the group-by but not the join part. We measure the time and we didn’t

wait until it finished because 10 minutes was already left, which is catastrophic comparing to the

index on the role_id field !

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 54 EPFL

Finally, we can ask ourselves whether other indexes could help. With this manner of writing query,

we don’t think we can find better indexes (to convince ourselves, it is enough to see the query plan).

Maybe it is better to obtain better performances without using a temporary table, we have tried and

have obtained worse performances.

8.1.2. Query(j)

First, we recall the Query(j) :

SELECT DISTINCT Per.`id`

FROM `casting` C

INNER JOIN `role` R ON C.`role_id` = R.`id`

INNER JOIN `production` P ON C.`production_id` = P.`id`

INNER JOIN `singleproduction` S ON P.`id` = S.`id`

INNER JOIN `kind` K ON S.`kind_id` = K.`id`

INNER JOIN `person` Per ON C.`person_id` = Per.`id`

WHERE R.`name` IN ("actor", "actress", "director")

AND K.`name` IN ("movie", "tv movie", "video movie")

AND Per.`deathdate` IS NOT NULL

AND P.`year` > EXTRACT(YEAR FROM Per.`deathdate`);

Because we have normalized everything, we have a lot of joins. However, the primary keys are used

which help a lot for the efficiency. Finally, we have 4 “where conditions” which help reducing the

running time of the query.

Without indexes

Let’s have a check of the execution plan without any indexes except the primary keys.

Execution plan seen as a table for query J of milestone 3, without indexes

Execution plan seen as a schema for query J of milestone 3, without indexes

For the table singleproduction, person and production, the primary keys are used and so we cannot

improve this part of the join. However, for the table casting, we don’t have any information about

the foreign keys for casting. Moreover, as before, it is more efficient to use an index on role.name

rather than its primary key. For the table kind, we will add an index on the field name, because we

can observe that only 75% of the data are returned using the primary key.

To improve this part, it is necessary to use an index on the field role.name (rather than the primary

key) and we should choose the index on the field casting.role_id for the same reason as before,

rather than choosing an index on casting.production_id.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 55 EPFL

With those observations, we can create indexes to solve those problems. Without any indexes, we

obtain a time of 30 seconds.

With indexes

We have to create the following indexes on :

- casting.role_id to improve the join operation

- role.name to improve the look-up to see which id corresponds to an actor/actress/director

- kind.name to improve the look-up to see which id corresponds to the specified kind of

movies

With those indexes, we obtain the below execution plan.

Execution plan seen as a table for query J of milestone 3, with proper indexes set

Execution plan seen as a schema for query J of milestone 3, with proper indexes set

We can see that we avoid the full-scan of casting and only 4326 rows are checked (reduced by a

factor 10’000) which is a very big gain !

For the table role we don’t use anymore the primary key and use the index on role.name which leads

to a range-scan. Because role is very small (we checked before 1 row and now 3 rows, which is very

small), it won’t be worse to use it and it will be better for the same reason as said before.

The table person and production havn’t changed their execution. The table singleproduction kept the

same index but has to use a distinct now. We didn’t find an explanation for that.

Finally, the table kind didn’t use our index. The reason is surely the order of the join and the

optimized one has seen that only 1 row was possible at this step. Maybe with different data in the

table kind (in fact we have only 4 entries and we look up for 3), the index on kind.name may be used

for the same reason as role.name (where role has 11 entries).

With all those indexes, we have reached a time of 9 seconds, which is a speed up of 3.33. Those

indexes were quite trivial because a lot of primary keys are used. However with those 2 indexes (and

1 not used), we obtain a more efficient query.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 56 EPFL

8.1.3. Query(m)

First, we recall the Query(m) :

SELECT DISTINCT C.person_id, C.production_id, N.`number`*T.`number` AS `number`

FROM `casting` C

INNER JOIN (

 SELECT N.person_id, COUNT(N.id) AS `number`

 FROM `name` N

 GROUP BY N.person_id

 HAVING `number` > 1

) N ON C.person_id = N.person_id

INNER JOIN (

 SELECT T.production_id, COUNT(T.id) AS `number`

 FROM `title` T

 GROUP BY T.production_id

 HAVING `number` > 1

) T ON C.production_id = T.production_id

ORDER BY number DESC

LIMIT 0,10;

Because tables name, title and casting are big (6 millions, 45 millions, 3.5 millions), we cannot do

directly a join on those 3 tables (as again due to our massive normalization). So, it is necessary to

create temporary tables which will have less rows !

Without indexes

Let’s have a check of the execution plan without any indexes except the primary keys.

Execution plan seen as a table for query M of milestone 3, without indexes

Execution plan seen as a schema for query M of milestone 3, without indexes

The first thing we can observe is that we have a full-scan for the 3 tables, which is enormous (55

millions in total). No keys at all are used in this query !

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 57 EPFL

Let’s begin with the table casting. We join directly from casting.person_id to name.person_id and we

do the same for the titles. It should be very interesting to add a double index on the fields

(casting.person_id, casting.production_id), as it will help a lot for the join operation which is very big.

For the temporary tables, we won’t create any indexes because it will be faster to use them directly

rather than the time required to create indexes. The number of rows for the temporary table of

name and title are respectively 500’000 and 200’00.

For the tables name and title, their behaviour is similar. To count the number of rows, we have to use

a temporary table which is costly. Interesting indexes should be on name.person_id and

title.production_id. This will help a lot for the grouping part (which needs a temporary table with a

filesort).

Unfortunately, for the last distinct and order, we cannot use indexes to improve this part.

With those observations, we can create indexes to solve those problems. Without any indexes, we

obtain a time of 301 seconds.

With indexes

We have to create the following indexes on :

- casting.(person_id, production_id) to improve the join operation

- name.person_id to improve the group by part

- title.production_id to improve the group by part

With those indexes, we obtain the below execution plan.

Execution plan seen as a table for query M of milestone 3, with proper indexes set

Execution plan seen as a schema for query M of milestone 3, with proper indexes set

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 58 EPFL

First thing we can see is that we are avoiding a full-scan to the table casting, which will be a big gain

in the execution time. Moreover the number of rows has been a lot reduced to reach the number of

4.

For the tables name and title with their indexes, we have improved the group-by part which doesn’t

need anymore a temporary table with a filesort, which is also a good thing for the running time.

The table derived3 hasn’t changed at all. However, table derived2 now needs a full-scan (and still the

temporary table and the filesort to do the last distinct and order). We didn’t find an explanation but

if we analyze the total number of rows, it is ~15 millions compared to the 55 millions before.

With all those indexes, we have reach a time of 42 seconds, which is a speed up of 7.17.

8.2. Distribution of the cost

After improving the queries E, J and M, we are going to try giving a rational explanation about the

distribution of the cost. When we talk about times in this chapter, we are referencing the time

obtained when we described the necessity of indexes in previous chapter.

8.2.1. Query(e)

Let’s start with the sub-query. The final temporary table has 2.3 millions rows. It is much better to

have this temporary table rather than directly doing a join between casting, role and production.

Creating indexes for this temporary isn’t worthwhile to its size.

Due to the index on casting.production_id, the grouping part is quite fast alone but because we have

a join on the table role, we need to do a filesort. The other index on role.name is very useful because

the id of the role actor is considered as constant by the optimizer. This sub-query (if executed alone)

is very fast (less than few seconds).

The place where we loose most of the time (we would say about 90%) is writing the result of this

subquery inside a temporary table and then doing a join with the table production. The reason is that

the last where clause is not strong enough to reduce the number of joins to do. The productions

having a NULL year represent only 4.23% of the productions. After the join, it represents only 1.6%

over all the productions in the join which is clearly insignificant. However, if the percentage was

higher (~20-40%) the time will be a lot reduced (remind of the index on production.year).

Finally, we still have the group by but it is optimized because we don’t need to use a temporary table

nor a filesort (due to the index on production.year).

8.2.2. Query(j)

This query uses 5 joins which is quite big (especially with tables like casting, production and person).

However, we have 4 where conditions which will limit a lot the number of final output (10’000).

Due to primary keys on tables person, singleproduction, kind, production and the indexes on

casting.role_id and role.name, the time of the join is a lot reduced.

We still have the distinct at the end which need a temporary table to eliminate the duplicate, which

takes also time but less than the join of course. We have tried to replaced it with a group by but it

was more efficient to use distinct rather than group by because the group by needs a temporary

table and a file sort

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 59 EPFL

8.2.3. Query(m)

First thing we can see which takes a lot of time are our 2 temporary tables (so no indexes) due to the

sub-queries. Remember they contains 500’000 and 200’000 rows with which we have to do a join

operation with casting. Those steps are costly but less than the distinct/order part, it takes

approximately 10% of the time (4.6 seconds).

Hopefully, those temporary table use indexes on name.person_id and production.title_id which

reduces their execution time (as said earlier in this chapter) especially for the group by part.

Finally, we have to distinct them (which needs a temporary table) and last step is to sort them which

needs another temporary table and a filesort. The bottleneck is clearly here because we have 3

millions of entries for the distinct (which takes few seconds), which becomes 2.7 millions and finally

the order part which is the bottleneck which takes the rest of the time.

Unfortunately, to improve the order part, we cannot make any assumption about the temporary

tables (such that the person/production with the highest score has a high score for the name and the

title).

8.3. Running times of all queries

All queries have been executed on a MacBook Pro Retina late 2013. 2 kinds of runs have been used :

the first one is an execution without any cache and the second one with cache (which is more

realistic in a website due to the number of requests done by visitors and the ability for DBA to

schedule “cold-start” procedures to heat the base at first launch). For the rest of details, please refer

to [§1.1.1].

8.3.1. Simple queries of milestone 2

Here are the running times for the queries of milestone 2.

Query / Time [sec] Without cache With cache

Query a 1.7 2.0

Query b 7.3 5.0

Query c 435.0 360.0

Query d 96.0 88.0

Query e 1.8 0.7

Query f 1.6 0.7

Query g 15.3 5.7

Queries C and D have been improved to use materialized views which can be updated once every

day, in order to have an execution time (simply a fetch in the materialized views) of a few seconds

when actually executing the query. However, we indicate here the running time of the equivalent all-

in-one SQL query. In the case of materialized views, it is a bit longer because we have to store the

results in a new table.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 60 EPFL

8.3.2. Simple queries of milestone 3

Here are the running times for the queries of milestone 3.

Query / Time [sec] Without cache With cache

Query a 88.900 45.000

Query b 0.002 0.001

Query c 3.850 2.100

Query d 3.920 3.600

Query e 49.630 52.000

Query f 1.277 0.500

Query g 1.040 0.070

Query h 0.060 0.038

Query i 0.900 0.600

Query j 5.660 6.000

Query k 93.162 75.000

Query l 5.412 4.000

Query m 3.840 25.000

Query n 1067.365 934.000

Queries K and N have been improved to use materialized views which can be updated once every

day, in order to have an execution time (simply a fetch in the materialized views) of a few seconds

when actually executing the query. However, we indicate here the running time of the equivalent all-

in-one SQL query. In the case of materialized views, it is a bit longer because we have to store the

results in a new table.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 61 EPFL

9. Appendix A – Data import detailed report

This appendix presents complete information about the work we did to import CSV files into the

database.

9.1. Imported files

Each of the following chapter details the importation of a particular CSV file, the general ideas

implemented in the corresponding PHP scripts, and the results obtained after the importation

(number of imported rows, essential warnings, etc…).

Each script is build such that all lines subject to an error of parsing or data format during the import is

written back in a separate CSV file. By doing this, only the failing lines of an import attempt have to

be imported again after the errors have been corrected in the script.

9.1.1. Persons

Persons are listed in the PERSONS.CSV file. For each row in this file, the script adds 2 records in

database.

 A record is inserted in the table person, with all fields of CSV except the name.

 A record is inserted in the table name, representing the main name of the person. The ID of

this record is generated by the AUTO_INCREMENT clause on this table.

Because the name and person tables are loop-linked by 2 foreign keys that cannot be NULL, we

temporarily authorize the name_id attribute in table person to be NULL during the import, so we can

import the person and set its name_id to NULL, then import the main name linked to the person,

gather its ID and set it back as name_id in person. Instead of doing this, we could just have disabled

the foreign keys check for the entire database, but it has the inconvenient that foreign keys values

are not fully checked again when constraints are re-enabled.

Here is the numeric result of the first import attempt.

Treated rows Success Success with warning Errors

4’857’852 4’857’845 0 7

The 7 errors have been identified as follows.

CSV line ID Manual operation

819’536 824190 removed (175 cm) from size

2’571’426 2586222 removed a space in birthdate between december and the year

2’710’402 2726001 replaced 1/2 by 0.5 in centimeters

2’848’752 2865228 rewritten 5'9 1/2 as 5' 9 1/2"

3’068’990 3086716 removed (160cm) from size

3’708’910 3730653 removed /98 in birthdate

4’049’865 4073747 replaced 6", 0' by 6'

After being manually corrected, these 7 lines were successfully imported during the second attempt.

Treated rows Success Success with warning Errors

7 7 0 0

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 62 EPFL

9.1.2. Alternative names

Alternative names of persons are listed in the ALTERNATIVE_NAME.CSV file. For each row in this file,

the script adds 1 record in database.

 A record is inserted in the table name, representing the alternative name and directly linked

to the person’s ID through the person_id field.

All rows were correctly imported at first attempt, with 10’109 duplicate entries that were deleted

(some of them were colliding with another identical alternative name for the same person, others

were colliding with their corresponding person’s main name).

Treated rows Success Success with warning Errors

869’697 859’588 0 10’109

9.1.3. Companies

Companies are listed in COMPANY.CSV file. For each row in this file, the script adds up to 2 records in

database.

 If it doesn’t already exist due to previously imported companies, a record is inserted in the

table country, representing the country in which the company is established.

 A record is inserted in the table company, representing the company.

All rows were correctly imported at first attempt, with no error nor warning ever.

Treated rows Success Success with warning Errors

279’142 279’142 0 0

9.1.4. Productions

Productions are listed in PRODUCTION.CSV file. For each row in this file, the script adds at least 3

records in database.

 A record is inserted in the table production, representing the parent element in the ISA

hierarchy for productions.

 A record is inserted in one of the singleproduction, serie or episode table, depending on the

kind of production, representing the child element in the ISA hierarchy.

 A record is inserted in the table title, representing the main title of the production.

In addition to this, records may be added in the following cases.

 When a row seems to be an alternative title for another episode (having same season and

episode number in a given serie), it is not added like described above, but only generates a

record in the table title, linked to the existing duplicate episode found as one of its

alternative titles.

 When a singleproduction is added, a record may be added in the table kind if the

corresponding kind does not already exist.

 When a production is added, a record may be added in the table gender if the corresponding

gender does not already exist.

 When an episode is added, a record may be added in the table season if the corresponding

season does not already exist in the given serie.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 63 EPFL

As for the persons import (see [§9.1.1]), the title_id field in the table production was temporarily

NULL-authorized during the import operations.

Here is the result of the first import attempt.

Treated rows Success Success with warning Errors

3’180’098 3’178’788 778 532

773 warning are generated for rows that generated an alternative title for an existing episode, as

explained above. In addition to being added as alternative titles, these rows also generated an

output line in a particular “duplicate ref” CSV file, to prevent other elements (productioncompany,

casting) pointing to them from crashing when being imported. This CSV file thus contains association

of their ID to the ID of episodes they are finally linked to as alternative titles.

The 5 remaining warnings are due to very long titles that have been truncated to 255 characters.

Despite investigation, no obvious reason was found for the 532 errors, so a second import attempt

has been executed without changing anything to the script. During this second attempt, all these

errors were eliminated. The final explanation is that they were episodes linked to series that

appeared further in the CSV file, and were not already inserted during the first attempt.

Treated rows Success Success with warning Errors

532 532 0 0

9.1.5. Alternative titles

Alternative titles of productions are listed in the file ALTERNATIVE_TITLE.CSV. For each row in this

file, the script adds 1 record in database.

 A record is added in the table title, representing the alternative title and directly linked to the

production’s ID through the production_id field.

When importing a line, the script checks in the “duplicate ref” CSV file generated during productions

import for alternative titles pointing to episodes that were originally converted themselves as

alternative titles for other episodes, automatically correcting the production_id field when necessary

so no row ever crash or is evicted.

All rows were correctly imported at first attempt, with 29’744 duplicate entries that were deleted

(some of them were colliding with another identical alternative title for the same production, others

were colliding with their corresponding production’s main title). 3 titles were truncated to 255

characters, and generated a warning for this reason.

Treated rows Success Success with warning Errors

407’441 377’694 3 29’744

9.1.6. Characters

The characters are listed in the file CHARACTER.CSV. For each row in this file, the script adds 1 record

in database.

 A record is added in the table character, representing the character.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 64 EPFL

When a character being imported has the exact same name as another already imported character, it

is not imported. Instead, a line is added in a separate “duplicate ref” CSV file, associating its ID to the

ID of the already existing character, so that casting importation won’t fail and won’t miss any record.

All rows were correctly imported at first attempt, with 704 duplicate entries that were added to the

“duplicate ref” CSV file instead of being imported into database. 5 names were truncated to 255

characters, and generated a warning for this reason.

Treated rows Success Success with warning Errors

3’589’274 3’588’565 5 704

9.1.7. Castings

The castings informations are listed in the file PRODUCTION_CAST.CSV. For each row in this file, the

script adds up to 2 records in database.

 If it doesn’t already exist due to previously imported casting records, a record is inserted in

the table role, representing the role played by the person in the production.

 A record is added in the table casting, representing the casting record.

When importing a line, the script checks in the “duplicate ref” CSV file generated during characters

import for IDs pointing to other characters, automatically correcting the character_id field when

necessary so no row ever crash or is evicted.

At first import attempt, 20’186 rows were corrected by the “duplicate ref” CSV file to point to the

correct character.

Treated rows Success Success with warning Errors

44’046’417 44’024’572 20’186 1’659

Some errors are due to an error in the script, not correcting production_id field according to its

“duplicate ref” CSV file. After this script was corrected, the second import attempt generated the

following result.

Treated rows Success Success with warning Errors

1’659 0 1’272 387

The 1’272 warnings corresponds to the previously generated errors due to the leak of production_id

field correction according to the “duplicate ref” CSV file. The remaining 387 errors are pure duplicate

rows in the PRODUCTION_CAST.CSV file violating the unicity columns over the whole attributes set of

the table casting, thus simply not imported.

9.1.8. Association between production and company

The last CSV file, PRODUCTION_COMPANY.CSV, contains association between companies and

productions, giving each tuple a particular type (distributor or production company). For each row in

this file, the script adds up to 2 records in database.

 If it doesn’t already exist due to previously imported productioncompany records, a record is

inserted in the table type, representing the type of association.

 A record is added in the table productioncompany, representing the association.

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 65 EPFL

When importing a line, the script checks in the “duplicate ref” CSV file generated during productions

import for alternative titles pointing to episodes that were originally converted themselves as

alternative titles for other episodes, automatically correcting the production_id field when necessary

so no row ever crash or is evicted.

At first import attempt, 20 rows were corrected as described right above, thus generating a warning.

80’261 rows were not imported at all, violating the unicity constraint over whole set of attributes of

the table productioncompany.

Treated rows Success Success with warning Errors

3’407’851 3’327’570 20 80’261

9.2. SQL DDL code before milestone 2 modification

Below you can find the DDL SQL code for the database creation as it was before milestone 2 changes

[§4.1] were executed.

-- 1. Create tables with unlinked columns, primary keys, unique indexes and simple indexes on

future foreign keys

CREATE TABLE `name` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `firstname` VARCHAR(255) NULL,

 `lastname` VARCHAR(255) NOT NULL,
 `person_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_first_last_person` (`firstname`, `lastname`, `person_id`)

);

CREATE TABLE `person` (

 `id` INT UNSIGNED,

 `gender` VARCHAR(1) NULL,

 `trivia` TEXT NULL,

 `quotes` TEXT NULL,

 `birthdate` DATE NULL,

 `deathdate` DATE NULL,

 `birthname` TEXT NULL,

 `minibiography` TEXT NULL,

 `spouse` VARCHAR(255) NULL,

 `height` FLOAT NULL,

 `name_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_main_name` (`name_id`)

);

CREATE TABLE `role` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `name` VARCHAR(255) NOT NULL,
 PRIMARY KEY (`id`),

 UNIQUE KEY `un_name` (`name`)

);

CREATE TABLE `character` (

 `id` INT UNSIGNED,

 `name` VARCHAR(255) NOT NULL,
 PRIMARY KEY (`id`),

 UNIQUE KEY `un_name` (`name`)

);

CREATE TABLE `production` (

 `id` INT UNSIGNED,

 `year` YEAR NULL,

 `title_id` INT UNSIGNED NOT NULL,

 `gender_id` INT UNSIGNED NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_main_title` (`title_id`),

 KEY `idx_gender` (`gender_id`)

);

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 66 EPFL

CREATE TABLE `casting` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `person_id` INT UNSIGNED NOT NULL,

 `production_id` INT UNSIGNED NOT NULL,

 `role_id` INT UNSIGNED NOT NULL,

 `character_id` INT UNSIGNED NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_person_prod_role ` (`person_id`, `production_id`, `role_id`)

);

CREATE TABLE `title` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `title` VARCHAR(255) NOT NULL,
 `production_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_title_production` (`title`, `production_id`)

);

CREATE TABLE `gender` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `name` VARCHAR(255) NOT NULL,
 PRIMARY KEY (`id`),

 UNIQUE KEY `un_name` (`name`)

);

CREATE TABLE `company` (

 `id` INT UNSIGNED,

 `name` VARCHAR(255) NOT NULL,
 `country_id` INT UNSIGNED NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_name_country` (`name`, `country_id`)

);

CREATE TABLE `country` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `code` VARCHAR(2) NOT NULL,
 PRIMARY KEY (`id`),

 UNIQUE KEY `un_code` (`code`)

);

CREATE TABLE `type` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `name` VARCHAR(255) NOT NULL,
 PRIMARY KEY (`id`),

 UNIQUE KEY `un_name` (`name`)

);

CREATE TABLE `singleproduction` (

 `id` INT UNSIGNED,

 `kind_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 KEY `idx_kind` (`kind_id`)

);

CREATE TABLE `kind` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `name` VARCHAR(255) NOT NULL,
 PRIMARY KEY (`id`),

 UNIQUE KEY `un_kind_name` (`name`)

);

CREATE TABLE `season` (

 `id` INT UNSIGNED AUTO_INCREMENT,

 `number` INT NULL,

 `serie_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_serie_number` (`serie_id`, `number`)

);

CREATE TABLE `serie` (

 `id` INT UNSIGNED,

 `yearstart` YEAR NULL,

 `yearend` YEAR NULL,

 PRIMARY KEY (`id`)

);

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 67 EPFL

CREATE TABLE `episode` (

 `id` INT UNSIGNED,

 `number` INT NULL,

 `season_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_season_number` (`season_id`, `number`)

);

CREATE TABLE `productioncompany` (

 `id` INT UNSIGNED,

 `production_id` INT UNSIGNED NOT NULL,

 `company_id` INT UNSIGNED NOT NULL,

 `type_id` INT UNSIGNED NOT NULL,

 PRIMARY KEY (`id`),

 UNIQUE KEY `un_production_company` (`production_id`, `company_id`, `type_id`)

);

-- 2. add all foreign keys constraints that are on schema

ALTER TABLE `name`

 ADD CONSTRAINT `fk_nametoperson` FOREIGN KEY (`person_id`) REFERENCES `person` (`id`)

 ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `person`

 ADD CONSTRAINT `fk_mainname` FOREIGN KEY (`name_id`) REFERENCES `name` (`id`)

 ON DELETE RESTRICT ON UPDATE CASCADE;

ALTER TABLE `production`

 ADD CONSTRAINT `fk_maintitle` FOREIGN KEY (`title_id`) REFERENCES `title` (`id`)

 ON DELETE RESTRICT ON UPDATE CASCADE,

 ADD CONSTRAINT `fk_productionhasgender` FOREIGN KEY (`gender_id`)

 REFERENCES `gender` (`id`) ON DELETE SET NULL ON UPDATE CASCADE;

ALTER TABLE `casting`

 ADD CONSTRAINT `fk_casting_person` FOREIGN KEY (`person_id`) REFERENCES `person` (`id`)

 ON DELETE CASCADE ON UPDATE CASCADE,

 ADD CONSTRAINT `fk_casting_role` FOREIGN KEY (`role_id`) REFERENCES `role` (`id`)

 ON DELETE RESTRICT ON UPDATE CASCADE,

 ADD CONSTRAINT `fk_casting_production` FOREIGN KEY (`production_id`)

 REFERENCES `production` (`id`) ON DELETE CASCADE ON UPDATE CASCADE,

 ADD CONSTRAINT `fk_casting_character` FOREIGN KEY (`character_id`)

 REFERENCES `character` (`id`) ON DELETE SET NULL ON UPDATE CASCADE;

ALTER TABLE `title`

 ADD CONSTRAINT `fk_titletoproduction` FOREIGN KEY (`production_id`)

 REFERENCES `production` (`id`) ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `company`

 ADD CONSTRAINT `fk_companyhascountry` FOREIGN KEY (`country_id`)

 REFERENCES `country` (`id`) ON DELETE SET NULL ON UPDATE CASCADE;

ALTER TABLE `season`

 ADD CONSTRAINT `fk_seasonhasserie` FOREIGN KEY (`serie_id`) REFERENCES `serie` (`id`)

 ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `episode`

 ADD CONSTRAINT `fk_episodehasseason` FOREIGN KEY (`season_id`) REFERENCES `season` (`id`)

 ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `singleproduction`

 ADD CONSTRAINT `fk_singleproduction_has_kind` FOREIGN KEY (`kind_id`)

 REFERENCES `kind` (`id`) ON DELETE RESTRICT ON UPDATE CASCADE;

ALTER TABLE `productioncompany`

 ADD CONSTRAINT `fk_productioncompany_production` FOREIGN KEY (`production_id`)

 REFERENCES `production` (`id`) ON DELETE CASCADE ON UPDATE CASCADE,

 ADD CONSTRAINT `fk_productioncompany_company` FOREIGN KEY (`company_id`)

 REFERENCES `company` (`id`) ON DELETE CASCADE ON UPDATE CASCADE,

 ADD CONSTRAINT `fk_productioncompany_type` FOREIGN KEY (`type_id`)

 REFERENCES `type` (`id`) ON DELETE RESTRICT ON UPDATE CASCADE;

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 68 EPFL

-- 3. add foreign keys constraints relative to "ISA" architecture

ALTER TABLE `serie`

 ADD CONSTRAINT `fk_serie_isa_production` FOREIGN KEY (`id`) REFERENCES `production` (`id`)

 ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `episode`

 ADD CONSTRAINT `fk_episode_isa_production` FOREIGN KEY (`id`)

 REFERENCES `production` (`id`) ON DELETE CASCADE ON UPDATE CASCADE;

ALTER TABLE `singleproduction`

 ADD CONSTRAINT `fk_singleproduction_isa_production` FOREIGN KEY (`id`)

 REFERENCES `production` (`id`) ON DELETE CASCADE ON UPDATE CASCADE;

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 69 EPFL

10. Appendix B – Web application detailed

This appendix presents advanced and redundant information about the web application backbone

and development process.

10.1. Major components

In this chapter, we first describe the main automatic components proposed by the ILARIA framework

that are used through the entire application to present data in a smart way, mostly using AJAX.

10.1.1. AJAX-loaded data lists

Data lists are implemented in an AJAX-loading fashion that makes them beautiful, instantly displaying

a “loading” GIF while queries are executed. Pagination is automatically managed, and buttons for

inserting, updating and deleting rows are easily added by few lines of codes.

An AJAX-loaded data list with 3 elements and management buttons

Every data list having a similar header with paging buttons as the one here is AJAX loaded. The entire

dataset is loaded once by AJAX after query was executed, and the pagination is done locally in

Javascript, offering the user a more fluid experience.

10.1.2. AJAX modal window

Using bootstrap generic functionality, a modal window is present in the HTML template code of the

application and is actively used to display subpages in the application, like the “are you sure ?”

windows when trying to delete an element, or result lists for subqueries when doing search.

The modal window filled with some actors playing the role of Primrose Everdeen in The Hunger Games saga

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 70 EPFL

The content of this modal window can (and actually is) loaded through AJAX requests. The request is

issued when the window is called to be opened, and the window displays a “loading” GIF until the

result becomes available to be displayed.

10.1.3. Dynamic forms

Forms are graphically built using bootstrap components. Javascript bunches of code are

automatically generated by the ILARIA framework to validate the content of the forms on the client

side, checking things like “this field must not be empty” and “this field must have a unique value

across all records”. When necessary, AJAX requests are issued to do live validation when editing

things.

A form with the “title” field in error state due to its emptiness

Validation button of forms are automatically disabled and red-colored when a problem relative to

the validation of a field is detected in the corresponding form. By using the ILARIA form component,

all validations are automatically done on client and server sides for maximum security and problem

prevention.

10.2. Main pages queries

In the following chapters we give details about the exact SQL queries that are used through the

application to display main pages of persons, productions and companies.

10.2.1. Person’s main page

These queries are used to display the content of a person’s main page, as described in [§5.2.1].

The following query is used to load the main elements of the page (no-AJAX).

SELECT DISTINCT PE.`id`, PE.`gender`, PE.`trivia`, PE.`quotes`, PE.`birthdate`,

 PE.`deathdate`, PE.`birthname`, PE.`minibiography`, PE.`spouse`, PE.`height`,

 PE.`name_id`, NA.`lastname`, NA.`firstname`

FROM `person` PE

INNER JOIN `name` NA ON PE.`name_id` = NA.`id`

WHERE PE.`id` = 2682115;

The following query is used by AJAX loading to gather the alternative names.

SELECT DISTINCT NA.`id`, NA.`lastname`, NA.`firstname`

FROM `name` NA

WHERE NA.`person_id` = 2682115

 AND NA.`id` != 2666765;

The final AND clause is used to evict the main name from the result set.

The following query is used by AJAX loading to gather the roles of a person in singleproductions.

SELECT DISTINCT SP.`id` AS `prod_id`, TI.`title` AS `prod_title`, KI.`name` AS `prod_kind`,

 GE.`name` AS `prod_gender`, PR.`year` AS `prod_year`, CH.`name` AS `char_name`, RO.`name`

 AS `role_name`

FROM `casting` CA

INNER JOIN `production` PR ON CA.`production_id` = PR.`id`

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 71 EPFL

INNER JOIN `title` TI ON PR.`title_id` = TI.`id`

LEFT JOIN `gender` GE ON PR.`gender_id` = GE.`id`

INNER JOIN `singleproduction` SP ON PR.`id` = SP.`id`

INNER JOIN `kind` KI ON SP.`kind_id` = KI.`id`

LEFT JOIN `character` CH ON CA.`character_id` = CH.`id`

INNER JOIN `role` RO ON CA.`role_id` = RO.`id`

WHERE CA.`person_id` = 2682115

ORDER BY PR.`year` DESC, TI.`title` ASC;

The following query is used by AJAX loading to gather the roles of a person in series.

(

SELECT SER.`id` AS `prod_id`, TI.`title` AS `prod_title`, COUNT(DISTINCT EP.`id`) AS

 `episode_count`, COUNT(DISTINCT SEA.`id`) AS `season_count`, SER.`yearstart` AS

 `prod_yearstart`, SER.`yearend` AS `prod_yearend`, GE.`name` AS `prod_gender`, CH.`name`

 AS `char_name`, RO.`name` AS `role_name`

FROM `casting` CA

INNER JOIN `production` PR ON CA.`production_id` = PR.`id`

INNER JOIN `title` TI ON PR.`title_id` = TI.`id`

LEFT JOIN `gender` GE ON PR.`gender_id` = GE.`id`

INNER JOIN `serie` SER ON PR.`id` = SER.`id`

INNER JOIN `season` SEA ON SER.`id` = SEA.`serie_id`

INNER JOIN `episode` EP ON SEA.`id` = EP.`season_id`

LEFT JOIN `character` CH ON CA.`character_id` = CH.`id`

INNER JOIN `role` RO ON CA.`role_id` = RO.`id`

WHERE CA.`person_id` = 1831321

GROUP BY PR.`id`, RO.`name`, CH.`name`

) UNION DISTINCT (

SELECT SER.`id` AS `prod_id`, TI.`title` AS `prod_title`, COUNT(DISTINCT EP.`id`) AS

 `episode_count`, COUNT(DISTINCT SEA.`id`) AS `season_count`, SER.`yearstart` AS

 `prod_yearstart`, SER.`yearend` AS `prod_yearend`, GE.`name` AS `prod_gender`, CH.`name`

 AS `char_name`, RO.`name` AS `role_name`

FROM `casting` CA

INNER JOIN `production` PR_EP ON CA.`production_id` = PR_EP.`id`

INNER JOIN `episode` EP ON PR_EP.`id` = EP.`id`

INNER JOIN `season` SEA ON EP.`season_id` = SEA.`id`

INNER JOIN `serie` SER ON SEA.`serie_id` = SER.`id`

INNER JOIN `production` PR_SER ON SER.`id` = PR_SER.`id`

INNER JOIN `title` TI ON PR_SER.`title_id` = TI.`id`

LEFT JOIN `gender` GE ON PR_SER.`gender_id` = GE.`id`

LEFT JOIN `character` CH ON CA.`character_id` = CH.`id`

INNER JOIN `role` RO ON CA.`role_id` = RO.`id`

WHERE CA.`person_id` = 1831321

GROUP BY PR_SER.`id`, RO.`name`, CH.`name`

)

ORDER BY `prod_yearstart` DESC, `prod_title` ASC;

The first subquery searches for series in which the person is directly linked, while the second

subquery is searching for series containing one or more episodes, with person linked to these

episodes.

10.2.2. Production’s main page

These queries are used to display the content of a production’s main page as described in [§0].

The following query helps to determine the kind of production in the ISA hierarchy (singleproduction,

serie or episode).

(

 SELECT SP.`id` AS `single`, NULL AS `serie`, NULL AS `episode`

 FROM `singleproduction` SP

 WHERE SP.`id`=2998449

) UNION (

 SELECT NULL AS `single`, SE.`id` AS `serie`, NULL AS `episode`

 FROM `serie` SE

 WHERE SE.`id`=2998449

) UNION (

 SELECT NULL AS `single`, NULL AS `serie`, EP.`id` AS `episode`

 FROM `episode` EP

 WHERE EP.`id`=2998449

);

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 72 EPFL

Then, in the case of a singleproduction, the following query is used to gather general informations

about it.

SELECT PR.`id` AS `prod_id`, TI.`title` AS `prod_title`, PR.`year` AS `prod_year`, KI.`name`

 AS `prod_kind`, GE.`name` AS `prod_gender`, PR.`title_id` AS `maintitle_id`

FROM `production` PR

INNER JOIN `title` TI ON PR.`title_id` = TI.`id`

LEFT JOIN `gender` GE ON PR.`gender_id` = GE.`id`

INNER JOIN `singleproduction` SP ON PR.`id` = SP.`id`

INNER JOIN `kind` KI ON SP.`kind_id` = KI.`id`

WHERE PR.`id`=2998449;

In the case of a serie, the following query is used to gather general informations about it.

SELECT SER.`id` AS `prod_id`, TI.`title` AS `serie_title`, SER.`yearstart` AS

 `serie_yearstart`, SER.`yearend` AS `serie_yearend`, GE.`name` AS `serie_gender`, TI.`id`

 AS `maintitle_id`, COUNT(DISTINCT SEA.`id`) AS `season_count`, COUNT(DISTINCT EP.`id`) AS

 `episode_count`

FROM `serie` SER

INNER JOIN `production` PR ON SER.`id` = PR.`id`

INNER JOIN `title` TI ON PR.`title_id` = TI.`id`

LEFT JOIN `gender` GE ON PR.`gender_id` = GE.`id`

LEFT JOIN `season` SEA ON SER.`id` = SEA.`serie_id`

LEFT JOIN `episode` EP ON SEA.`id` = EP.`season_id`

WHERE SER.`id`=11306

GROUP BY SER.`id`;

In the case of an episode, the following query is used to gather general informations about it.

SELECT EP.`id` AS `prod_id`, EP_TI.`title` AS `episode_title`, EP.`number` AS

 `episode_number`, EP_PR.`year` AS `episode_year`, EP_TI.`id` AS `maintitle_id`,

 SEA.`number` AS `season_number`, SER.`id` AS `serie_id`, SER_TI.`title` AS `serie_title`,

 SER_GE.`name` AS `serie_gender`

FROM `episode` EP

INNER JOIN `production` EP_PR ON EP.`id` = EP_PR.`id`

INNER JOIN `title` EP_TI ON EP_PR.`title_id` = EP_TI.`id`

INNER JOIN `season` SEA ON EP.`season_id` = SEA.`id`

INNER JOIN `serie` SER ON SEA.`serie_id` = SER.`id`

INNER JOIN `production` SER_PR ON SER.`id` = SER_PR.`id`

INNER JOIN `title` SER_TI ON SER_PR.`title_id` = SER_TI.`id`

LEFT JOIN `gender` SER_GE ON SER_PR.`gender_id` = SER_GE.`id`

WHERE EP.`id`=11316;

In the case of a serie, the list of seasons it contains is loaded by the following query.

SELECT SEA.`id` AS `season_id`, SEA.`number` AS `season_number`, COUNT(DISTINCT EP.`id`) AS

 `episode_count`

FROM `season` SEA

INNER JOIN `episode` EP ON SEA.`id` = EP.`season_id`

WHERE SEA.`serie_id`=11306

GROUP BY SEA.`id`

ORDER BY SEA.`number`;

In the case of a serie, when clicking on the “see episodes” button of a given season, the following

query is used to load the content of the modal window.

SELECT EP.`id` AS `episode_id`, TI.`title` AS `episode_title`, EP.`number` AS `episode_number`

FROM `episode` EP

INNER JOIN `production` PR ON EP.`id` = PR.`id`

INNER JOIN `title` TI ON PR.`title_id` = TI.`id`

WHERE EP.`season_id`=920

ORDER BY EP.`number`;

In the case of an episode, the information about the related season and serie can be obtained via the

following query.

SELECT EP.`id` AS `episode_id`, TI.`title` AS `episode_title`, EP.`number` AS `episode_number`

FROM `episode` EP

INNER JOIN `production` PR ON EP.`id` = PR.`id`

INNER JOIN `title` TI ON PR.`title_id` = TI.`id`

WHERE EP.`season_id`=920

ORDER BY EP.`number`;

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 73 EPFL

For all kinds of productions, the following query is used to gather the casting.

SELECT PE.`id` AS `person_id`, NA.`lastname` AS `person_lastname`, NA.`firstname` AS

 `person_firstname`, RO.`name` AS `role_name`, CH.`name` AS `char_name`

FROM `casting` CA

INNER JOIN `person` PE ON CA.`person_id` = PE.`id`

INNER JOIN `name` NA ON PE.`name_id` = NA.`id`

INNER JOIN `role` RO ON CA.`role_id` = RO.`id`

LEFT JOIN `character` CH ON CA.`character_id` = CH.`id`

WHERE CA.`production_id`=2998449;

For all kinds of productions, the following query is used to gather the companies involved in the

production.

SELECT COM.`id` AS `id`, COM.`name` AS `name`, COU.`code` AS `country`, TY.`name` AS `type`

FROM `productioncompany` PC

INNER JOIN `company` COM ON PC.`company_id` = COM.`id`

INNER JOIN `country` COU ON COM.`country_id` = COU.`id`

INNER JOIN `type` TY ON PC.`type_id` = TY.`id`

WHERE PC.`production_id`=2998449;

For all kinds of productions, the following query is used to gather the alternative titles.

SELECT TI.`title`

FROM `title` TI

WHERE TI.`production_id`=2998449

 AND TI.`id`!=2998451;

The final AND clause is used to evict the main title from the result set.

10.2.3. Company’s main page

These queries are used to display the content of a company’s main page as described in [§5.2.3].

The following query is used to gather the general informations about a company.

SELECT TI.`title`

FROM `title` TI

WHERE TI.`production_id`=2998449

 AND TI.`id`!=2998451;

The following query is used to gather the list of singleproductions in which the company is involved.

SELECT SP.`id` AS `id`, TI.`title` AS `title`, KI.`name` AS `kind`, PR.`year` AS `year`,

 GE.`name` AS `gender`, TY.`name` AS `type`

FROM `productioncompany` PC

INNER JOIN `production` PR ON PC.`production_id` = PR.`id`

INNER JOIN `title` TI ON PR.`title_id` = TI.`id`

LEFT JOIN `gender` GE ON PR.`gender_id` = GE.`id`

INNER JOIN `singleproduction` SP ON PR.`id` = SP.`id`

INNER JOIN `kind` KI ON SP.`kind_id` = KI.`id`

INNER JOIN `type` TY ON PC.`type_id` = TY.`id`

WHERE PC.`company_id`=3293

ORDER BY TI.`title`, TY.`id`;

The following query is used to gather the list of series in which the company is involved.

(

SELECT SER.`id` AS `id`, TI.`title` AS `title`, COUNT(DISTINCT EP.`id`) AS `episode_count`,

 COUNT(DISTINCT SEA.`id`) AS `season_count`, SER.`yearstart` AS `yearstart`, SER.`yearend`

 AS `yearend`, GE.`name` AS `gender`, TY.`name` AS `type`

FROM `productioncompany` PC

INNER JOIN `production` PR ON PC.`production_id` = PR.`id`

INNER JOIN `title` TI ON PR.`title_id` = TI.`id`

LEFT JOIN `gender` GE ON PR.`gender_id` = GE.`id`

INNER JOIN `serie` SER ON PR.`id` = SER.`id`

INNER JOIN `season` SEA ON SER.`id` = SEA.`serie_id`

INNER JOIN `episode` EP ON SEA.`id` = EP.`season_id`

INNER JOIN `type` TY ON PC.`type_id` = TY.`id`

WHERE PC.`company_id`=3293

GROUP BY PR.`id`, TY.`id`

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 74 EPFL

) UNION DISTINCT (

SELECT SER.`id` AS `id`, TI.`title` AS `title`, COUNT(DISTINCT EP.`id`) AS `episode_count`,

 COUNT(DISTINCT SEA.`id`) AS `season_count`, SER.`yearstart` AS `yearstart`, SER.`yearend`

 AS `yearend`, GE.`name` AS `gender`, TY.`name` AS `type`

FROM `productioncompany` PC

INNER JOIN `production` PR_EP ON PC.`production_id` = PR_EP.`id`

INNER JOIN `episode` EP ON PR_EP.`id` = EP.`id`

INNER JOIN `season` SEA ON EP.`season_id` = SEA.`id`

INNER JOIN `serie` SER ON SEA.`serie_id` = SER.`id`

INNER JOIN `production` PR_SER ON SER.`id` = PR_SER.`id`

INNER JOIN `title` TI ON PR_SER.`title_id` = TI.`id`

LEFT JOIN `gender` GE ON PR_SER.`gender_id` = GE.`id`

INNER JOIN `type` TY ON PC.`type_id` = TY.`id`

WHERE PC.`company_id`=3293

GROUP BY PR_SER.`id`, TY.`id`

)

ORDER BY `title`, `type`;

The first subquery searches for series in which the company is directly linked, while the second

subquery is searching for series containing one or more episodes, with company linked to these

episodes.

10.3. Insert, update and delete procedures

The following chapters present the insert, update and delete procedure, written in pseudo-code to

save time and space as they are all basic DML SQL queries.

10.3.1. Persons

These are the procedures used to modify tables corresponding to a “Person”.

Insertion

At the form validation, the insertion procedure is triggered. During this procedure, the foreign key

checks are disabled on the database (SET FOREIGN_KEY_CHECKS=0). They are re-enabled at the end

of the procedure. It is no longer an option to authorize the NULL value on one of the foreign key

fields as it was done during import (see [§9.1.1]), because executing the corresponding query takes

about 10 seconds with millions of records already in the table.

The insertion procedure follows this schema.

1. Start a transaction

2. Insert a record in the person table, with value 0 as name_id

3. Insert a record in the name table, with the new person record ID as person_id

4. Update the person record to set name_id to the correct value

5. Commit the transaction

If anything fails during this procedure, a rollback is immediately triggered, guaranteeing that no

inconsistent state of the database could be ever reached.

Update

Despite the insertion procedure needs it, the update one doesn’t necessitate any constraint to be

wiped out.

The update procedure follows this schema.

1. Start a transaction

2. Update the corresponding record in the person table

3. Find the main name ID from this record

4. Update the corresponding record in the name table

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 75 EPFL

5. Commit the transaction

If anything fails during this procedure, a rollback is immediately triggered, guaranteeing that no

inconsistent state of the database could be ever reached.

Deletion

Like the insertion procedure, the deletion one temporarily disables the foreign keys constraints while

deleting a person.

The delete procedure follows this schema.

1. Start a transaction

2. Delete the name records with matching person_id

3. Delete the person record

4. Delete the casting records with matching person_id

5. Commit the transaction

If anything fails during this procedure, a rollback is immediately triggered, guaranteeing that no

inconsistent state of the database could be ever reached.

10.3.2. Alternative names

These are the procedures used to modify tables corresponding to a “Alternative name”.

Insertion

The insertion procedure follows this schema.

1. Insert a record in the name table

No transaction is used because there is only one SQL query to execute, thus fully succeeding or failing

by itself.

Update

The update procedure follows this schema.

1. Update the corresponding record in the name table

No transaction is used because there is only one SQL query to execute, thus fully succeeding or failing

by itself.

Deletion

The delete procedure follows this schema.

1. Delete the corresponding record from the name table

No transaction is used because there is only one SQL query to execute, thus fully succeeding or failing

by itself.

10.3.3. Productions

These are the procedures used to modify tables corresponding to a “Production”.

Insertion of a movie

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 76 EPFL

At the form validation, the insertion procedure is triggered. During this procedure, the foreign key

checks are disabled on the database (SET FOREIGN_KEY_CHECKS=0). They are re-enabled at the end

of the procedure. It is no longer an option to authorize the NULL value on one of the foreign key

fields as it was done during import (see [§9.1.4]), because executing the corresponding query takes

about 10 seconds with millions of records already in the table.

The insertion procedure follows this schema.

1. Start a transaction

2. Insert a record in the production table, with value 0 as title_id

3. Insert a record in the title table, with the new production record ID as production_id

4. Update the production record to set title_id to the correct value

5. Insert a record in the singleproduction table, thus completing the ISA hierarchy covering

constraint

6. Commit the transaction

If anything fails during this procedure, a rollback is immediately triggered, guaranteeing that no

inconsistent state of the database could be ever reached.

Insertion of a serie

Like for the insertion of a movie, the foreign keys constraints are temporarily disabled during

insertion of a serie.

The insertion procedure follows this schema.

1. Start a transaction

2. Insert a record in the production table, with value 0 as title_id

3. Insert a record in the title table, with the new production record ID as production_id

4. Update the production record to set title_id to the correct value

5. Insert a record in the serie table, thus completing the ISA hierarchy covering constraint

6. Commit the transaction

If anything fails during this procedure, a rollback is immediately triggered, guaranteeing that no

inconsistent state of the database could be ever reached.

Insertion of an episode

Like for the insertion of a movie, the foreign keys constraints are temporarily disabled during

insertion of an episode.

The insertion procedure follows this schema.

1. Start a transaction

2. Insert a record in the production table, with value 0 as title_id

3. Insert a record in the title table, with the new production record ID as production_id

4. Update the production record to set title_id to the correct value

5. Search through the season table for the season having serie_id and number correctly set

6. If no season is found, insert it in the season table

7. Insert a record in the episode table, pointing to the (newly inserted) season, thus completing

the ISA hierarchy covering constraint

8. Commit the transaction

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 77 EPFL

If anything fails during this procedure, a rollback is immediately triggered, guaranteeing that no

inconsistent state of the database could be ever reached.

Updating a movie, a serie or an episode

Despite the insertion procedures needs it, the update ones doesn’t necessitate any constraint to be

wiped out.

The update procedures are similar and ordered like the insertion ones for each kind of production.

Transactions are always used, and rollback is a systematic action in case of problem.

Deleting a movie or an episode

Like the insertion procedures, the deletion ones temporarily disables the foreign keys constraints

while deleting a production.

The delete procedure follows this schema.

1. Start a transaction

2. Delete the title records with matching production_id

3. Delete the production record

4. Delete the singleproduction/episode record

5. Delete the casting records with matching production_id

6. Delete the productioncompany records with matching production_id

7. Commit the transaction

If anything fails during this procedure, a rollback is immediately triggered, guaranteeing that no

inconsistent state of the database could be ever reached.

Deleting a serie

Like the insertion procedure, the deletion one temporarily disables the foreign keys constraints while

deleting a production.

The delete procedure follows this schema.

1. Start the transaction

2. Delete the title records with matching production_id

3. Delete the production record

4. Delete the serie record

5. Delete the casting records with matching production_id

6. Delete the productioncompany records with matching production_id

7. Select and memorize the season records with matching serie_id

8. Delete these season records

9. Select and memorize the episode records linked to a season record previously memorized

10. Delete these episode records

11. Delete the production records matching any of the previously memorized episode

12. Delete the title records with matching production_id on any memorized episode

13. Delete the casting records with matching production_id on any memorized episode

14. Delete the productioncompany records with matching production_id on any memorized

episode

15. Commit the transaction

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 78 EPFL

If anything fails during this procedure, a rollback is immediately triggered, guaranteeing that no

inconsistent state of the database could be ever reached.

10.3.4. Alternative titles

These are the procedures used to modify tables corresponding to a “Alternative title”.

Insertion

The insertion procedure follows this schema.

1. Insert a record in the title table

No transaction is used because there is only one SQL query to execute, thus fully succeeding or failing

by itself.

Update

The update procedure follows this schema.

1. Update the corresponding record in the title table

No transaction is used because there is only one SQL query to execute, thus fully succeeding or failing

by itself.

Deletion

The delete procedure follows this schema.

1. Delete the corresponding record from the title table

No transaction is used because there is only one SQL query to execute, thus fully succeeding or failing

by itself.

10.3.5. Casting

These are the procedures used to modify tables corresponding to a “Casting”.

Insertion

The insertion procedure follows this schema.

1. Start a transaction

2. Search through the character table for character having name correctly set

3. If no character is found, insert it in the character table

4. Insert a record in the casting table, pointing to the (newly inserted) character

5. Commit the transaction

If anything fails during this procedure, a rollback is immediately triggered, guaranteeing that no

inconsistent state of the database could be ever reached.

Update

The update procedure follows this schema.

1. Start a transaction

2. Search through the character table for character having name correctly set

3. If no character is found, insert it in the character table

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 79 EPFL

4. Update the corresponding record in the casting table, pointing to the (newly inserted)

character

5. Commit the transaction

If anything fails during this procedure, a rollback is immediately triggered, guaranteeing that no

inconsistent state of the database could be ever reached.

Deletion

The deletion procedure follows this schema.

1. Delete the casting record

No transaction is used because there is only one SQL query to execute, thus fully succeeding or failing

by itself.

10.3.6. Companies involved in a production

These are the procedures used to modify tables corresponding to the participation of a company in a

production.

Insertion

The insertion procedure follows this schema.

1. Insert a record in the productioncompany table

No transaction is used because there is only one SQL query to execute, thus fully succeeding or failing

by itself.

Update

The update procedure follows this schema.

1. Update the productioncompany record

No transaction is used because there is only one SQL query to execute, thus fully succeeding or failing

by itself.

Deletion

The deletion procedure follows this schema.

1. Delete the productioncompany record

No transaction is used because there is only one SQL query to execute, thus fully succeeding or failing

by itself.

10.3.7. Companies

These are the procedures used to modify tables corresponding to a “Company”.

Insertion

The insertion procedure follows this schema.

1. Start a transaction

2. Search through the country table for country having code correctly set

3. If no country is found, insert it in the country table

CS-322 Introduction to database systems Final report Diego Antognini - 243163
IMDB project Jason Racine - 244270
Group 15 Alexandre Veuthey - 224295

20.05.2015 80 EPFL

4. Insert a record in the company table

5. Commit the transaction

If anything fails during this procedure, a rollback is immediately triggered, guaranteeing that no

inconsistent state of the database could be ever reached.

Update

The update procedure follows this schema.

1. Start a transaction

2. Search through the country table for country having code correctly set

3. If no country is found, insert it in the country table

4. Update the corresponding record in the company table

5. Commit the transaction

If anything fails during this procedure, a rollback is immediately triggered, guaranteeing that no

inconsistent state of the database could be ever reached.

Deletion

The delete procedure follows this schema.

1. Delete the company record

No transaction is used because there is only one SQL query to execute, thus fully succeeding or failing

by itself.

	1. Introduction
	1.1. Technologies
	1.1.1. Database management system (DBMS)
	1.1.2. Graphical application development

	2. Conceptual design
	2.1. Metadata and data analysis
	2.1.1. “PERSON” and “ALTERNATIVE_NAME”
	2.1.2. “PRODUCTION” and “ALTERNATIVE_TITLE”
	2.1.3. “COMPANY” and “PRODUCTION_COMPANY”
	2.1.4. “PRODUCTION_CAST” and “CHARACTER”

	2.2. Entity-Relationship schema (ER)
	2.2.1. ER schema
	2.2.2. Caption
	2.2.3. Out-of-model constraints
	2.2.4. Account for design choices

	3. Logical design
	3.1. Relational schema
	3.1.1. Textual schema
	3.1.2. Account for translation choices
	3.1.3. Unacknowledged constraints

	3.2. DDL SQL code
	3.2.1. MySQL DDL code
	3.2.2. Method for writing SQL DDL code
	3.2.3. Extended note about AUTO_INCREMENT clauses
	3.2.4. Verification of the correctness of the script

	4. Data import
	4.1. Changes made in database schema
	4.1.1. Data types for indexed texts
	4.1.2. Length of country codes
	4.1.3. Handling of pre-1900 values in YEAR-typed fields
	4.1.4. Changed UNIQUE index in casting

	5. Web application
	5.1. Search functionality
	5.1.1. Search queries
	5.1.2. Graphical interface

	5.2. Main pages
	5.2.1. Person’s main page
	5.2.2. Production’s main page
	5.2.3. Company’s main page

	5.3. Inserting, updating and deleting entities
	5.3.1. Persons
	5.3.2. Alternative names
	5.3.3. Productions
	5.3.4. Alternative titles
	5.3.5. Casting
	5.3.6. Companies involved in a production
	5.3.7. Companies
	5.3.8. Miscellaneous

	6. Simple queries (milestone 2)
	6.1. SQL code
	6.1.1. Query (a)
	6.1.2. Query (b)
	6.1.3. Query (c)
	6.1.4. Query (d)
	6.1.5. Query (e)
	6.1.6. Query (f)
	6.1.7. Query (g)

	6.2. Application dedicated page
	6.2.1. Launch page
	6.2.2. Queries results

	7. Interesting queries (milestone 3)
	7.1. SQL code
	7.1.1. Query (a)
	7.1.2. Query (b)
	7.1.3. Query (c)
	7.1.4. Query (d)
	7.1.5. Query (e)
	7.1.6. Query (f)
	7.1.7. Query (g)
	7.1.8. Query (h)
	7.1.9. Query (i)
	7.1.10. Query (j)
	7.1.11. Query (k)
	7.1.12. Query (l)
	7.1.13. Query (m)
	7.1.14. Query (n)

	7.2. Application dedicated page
	7.2.1. Launch page
	7.2.2. Queries results

	8. Detailed queries analysis
	8.1. Necessity of indexes
	8.1.1. Query(e)
	8.1.2. Query(j)
	8.1.3. Query(m)

	8.2. Distribution of the cost
	8.2.1. Query(e)
	8.2.2. Query(j)
	8.2.3. Query(m)

	8.3. Running times of all queries
	8.3.1. Simple queries of milestone 2
	8.3.2. Simple queries of milestone 3

	9. Appendix A – Data import detailed report
	9.1. Imported files
	9.1.1. Persons
	9.1.2. Alternative names
	9.1.3. Companies
	9.1.4. Productions
	9.1.5. Alternative titles
	9.1.6. Characters
	9.1.7. Castings
	9.1.8. Association between production and company

	9.2. SQL DDL code before milestone 2 modification

	10. Appendix B – Web application detailed
	10.1. Major components
	10.1.1. AJAX-loaded data lists
	10.1.2. AJAX modal window
	10.1.3. Dynamic forms

	10.2. Main pages queries
	10.2.1. Person’s main page
	10.2.2. Production’s main page
	10.2.3. Company’s main page

	10.3. Insert, update and delete procedures
	10.3.1. Persons
	10.3.2. Alternative names
	10.3.3. Productions
	10.3.4. Alternative titles
	10.3.5. Casting
	10.3.6. Companies involved in a production
	10.3.7. Companies

